OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18159–18167

Speckle optical tweezers: micromanipulation with random light fields

Giorgio Volpe, Lisa Kurz, Agnese Callegari, Giovanni Volpe, and Sylvain Gigan  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18159-18167 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1895 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Current optical manipulation techniques rely on carefully engineered setups and samples. Although similar conditions are routinely met in research laboratories, it is still a challenge to manipulate microparticles when the environment is not well controlled and known a priori, since optical imperfections and scattering limit the applicability of this technique to real-life situations, such as in biomedical or microfluidic applications. Nonetheless, scattering of coherent light by disordered structures gives rise to speckles, random diffraction patterns with well-defined statistical properties. Here, we experimentally demonstrate how speckle fields can become a versatile tool to efficiently perform fundamental optical manipulation tasks such as trapping, guiding and sorting. We anticipate that the simplicity of these “speckle optical tweezers” will greatly broaden the perspectives of optical manipulation for real-life applications.

© 2014 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: May 29, 2014
Revised Manuscript: July 5, 2014
Manuscript Accepted: July 5, 2014
Published: July 18, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Giorgio Volpe, Lisa Kurz, Agnese Callegari, Giovanni Volpe, and Sylvain Gigan, "Speckle optical tweezers: micromanipulation with random light fields," Opt. Express 22, 18159-18167 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283–285 (1971). [CrossRef]
  3. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011). [CrossRef]
  4. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011). [CrossRef]
  5. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013). [CrossRef] [PubMed]
  6. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987). [CrossRef] [PubMed]
  7. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003). [CrossRef] [PubMed]
  8. A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008). [CrossRef] [PubMed]
  9. E. R. Dufresne and D. G. Grier, “Optical tweezers arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998). [CrossRef]
  10. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999). [CrossRef] [PubMed]
  11. G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes,” Opt. Lett. 32(9), 1144–1146 (2007). [CrossRef] [PubMed]
  12. K. Xiao and D. G. Grier, “Multidimensional Optical Fractionation of Colloidal Particles with Holographic Verification,” Phys. Rev. Lett. 104(2), 028302 (2010). [CrossRef] [PubMed]
  13. I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006). [CrossRef]
  14. T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006). [CrossRef]
  15. S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9(10), 3527–3531 (2009). [CrossRef] [PubMed]
  16. V. Demergis and E. L. Florin, “High precision and continuous optical transport using a standing wave optical line trap,” Opt. Express 19(21), 20833–20848 (2011). [CrossRef] [PubMed]
  17. M. Šiler, T. Čižmár, and P. Zemánek, “Speed enhancement of multi-particle chain in a traveling standing wave,” Appl. Phys. Lett. 100(5), 051103 (2012). [CrossRef]
  18. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011). [CrossRef]
  19. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006). [CrossRef] [PubMed]
  20. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66(11), 1145–1150 (1976). [CrossRef]
  21. D. Boiron, C. Mennerat-Robilliard, J. M. Fournier, L. Guidoni, C. Salomon, and G. Grynberg, “Trapping and cooling cesium atoms in a speckle field,” Eur. Phys. J. D 7(3), 373–377 (1999). [CrossRef]
  22. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010). [CrossRef]
  23. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010). [CrossRef] [PubMed]
  24. J. P. Staforelli, J. M. Brito, E. Vera, P. Solano, and A. A. Lencina, “A clustered speckle approach to optical trapping,” Opt. Commun. 283(23), 4722–4726 (2010). [CrossRef]
  25. R. D. L. Hanes, C. Dalle-Ferrier, M. Schmiedeberg, M. C. Jenkins, and S. U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter 8(9), 2714–2723 (2012). [CrossRef]
  26. K. M. Douglass, S. Sukhov, and A. Dogariu, “Superdiffusion in optically controlled active media,” Nat. Photonics 6(12), 834–837 (2012). [CrossRef]
  27. F. Evers, C. Zunke, R. D. L. Hanes, J. Bewerunge, I. Ladadwa, A. Heuer, and S. U. Egelhaaf, “Particle dynamics in two-dimensional random-energy landscapes: Experiments and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(2), 022125 (2013). [CrossRef] [PubMed]
  28. F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J. Spec. Top. 222(11), 2995–3009 (2013). [CrossRef]
  29. G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation,” Sci. Rep. 4, 3936 (2014). [CrossRef] [PubMed]
  30. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010). [CrossRef]
  31. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012). [CrossRef] [PubMed]
  32. L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical Thermal Ratchet,” Phys. Rev. Lett. 74(9), 1504–1507 (1995). [CrossRef] [PubMed]
  33. S. H. Lee, K. Ladavac, M. Polin, and D. G. Grier, “Observation of flux reversal in a symmetric optical thermal ratchet,” Phys. Rev. Lett. 94(11), 110601 (2005). [CrossRef] [PubMed]
  34. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012). [CrossRef]
  35. J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996). [CrossRef]
  36. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Co. Publishers, Greenwood Village, 2007).
  37. L. I. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional optical trap,” Nature 402(6763), 785–787 (1999). [CrossRef]
  38. A. Callegari, M. Mijalkov, A. B. Gököz, and G. Volpe, “Computational toolbox for optical tweezers in geometrical optics,” arXiv:1402.5439 (2014).
  39. G. Volpe and G. Volpe, “Simulation of a Brownian particle in an optical trap,” Am. J. Phys. 81(3), 224–230 (2013). [CrossRef]
  40. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000). [CrossRef]
  41. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Springer, New York, 1983).
  42. P. Reimann, “Brownian motors: noisy transport far from equilibrium,” Phys. Rep. 361(2-4), 57–265 (2002). [CrossRef]
  43. P. Hänggi and F. Marchesoni, “Artificial Brownian motors: Controlling transport on the nanoscale,” Rev. Mod. Phys. 81(1), 387–442 (2009). [CrossRef]
  44. F. Marchesoni, “Transport properties in disordered ratchet potentials,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(3), 2492–2495 (1997). [CrossRef]
  45. J. Rousselet, L. Salome, A. Ajdari, and J. Prost, “Directional motion of Brownian particles induced by a periodic asymmetric potential,” Nature 370(6489), 446–447 (1994). [CrossRef] [PubMed]
  46. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988). [CrossRef] [PubMed]
  47. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited