OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18168–18176

Homodyne digital interferometry for a sensitive fiber frequency reference

Silvie Ngo, Terry G. McRae, Malcolm B. Gray, and Daniel A. Shaddock  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18168-18176 (2014)
http://dx.doi.org/10.1364/OE.22.018168


View Full Text Article

Enhanced HTML    Acrobat PDF (2182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Digitally enhanced homodyne interferometry enables robust interferometric sensitivity to be achieved in an optically simple configuration by shifting optical complexity into the digital signal processing regime. We use digitally enhanced homodyne interferometry in a simple, all-fiber Michelson interferometer to achieve a frequency reference stability of better than 20 Hz/√Hz from 10 mHz to 1 Hz, satisfying, for the first time in an all fiber system, the stability requirements for the Gravity Recovery and Climate Experiment Follow On mission. In addition, we have demonstrated stability that satisfies the future mission objectives at frequencies down to 1 mHz. This frequency domain stability translates into a fractional Allan deviation of 3.3 × 10−17 for an integration time of 55 seconds.

© 2014 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5060) Instrumentation, measurement, and metrology : Phase modulation

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 17, 2014
Revised Manuscript: July 9, 2014
Manuscript Accepted: July 9, 2014
Published: July 18, 2014

Citation
Silvie Ngo, Terry G. McRae, Malcolm B. Gray, and Daniel A. Shaddock, "Homodyne digital interferometry for a sensitive fiber frequency reference," Opt. Express 22, 18168-18176 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18168


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Stephens, R. Craig, J. Leitch, R. Pierce, R. S. Neerim, P. Bender, and B. Loomis, “Interferometric Range Transceiver for Measuring Temporal Gravity Variations,” in Proceedings of the 2006 Earth Science Technology Conference, College Park, MD (2006).
  2. J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A77, 053809 (2008). [CrossRef]
  3. T. Schuldt, A. Keetman, K. Döringshoff, M. Reggentin, E. Kovalchuk, M. Nagel, M. Gohlke, U. Johann, D. Weise, A. Peters, and C. Braxmaier, “An ultra-stable optical frequency reference for space applications,” in Proceedings of the European Frequency and Time Forum (EFTF), Gothenburg (Sweden) (2012), pp. 554–558.
  4. G. A. Cranch, “Frequency noise reduction in erbium-doped fiber distributed-feedback lasers by electronic feedback,” Opt. Lett.27, 1114–1116 (2002). [CrossRef]
  5. K. Takahashi, M. Ando, and K. Tsubono, “Stabilization of laser intensity and frequency using optical fiber,” Opt. Lett.32, 3355–3357 (2007).
  6. F. Kéfélian, H. Jiang, P. Lemonde, and G. Santarelli, “Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line,” Opt. Lett.34, 914–916 (2009). [CrossRef] [PubMed]
  7. T. T-Y Lam, M. B. Gray, D. A. Shaddock, D. M. McClelland, and J. H. Chow, “Subfrequency noise signal extraction in fiber-optic strain sensors using postprocessing,” Opt. Lett.37, 2169–2171 (2012). [CrossRef] [PubMed]
  8. T. G. McRae, S. Ngo, D. A. Shaddock, M. T. L. Hsu, and M. B. Gray, “Digitally enhanced optical fiber frequency reference,” Opt. Lett.39, 1752–1755 (2014). [CrossRef] [PubMed]
  9. D. A. Shaddock, “Digitally enhanced heterodyne interferometry,” Opt. Lett.32, 3355–3357 (2007). [CrossRef] [PubMed]
  10. D. M. Wuchenich, T. T. Y. Lam, J. H. Chow, D. E. McClelland, and D. A. Shaddock, “Laser frequency noise immunity in multiplexed displacement sensing,” Opt. Lett.36(5), 672–674 (2011). [CrossRef] [PubMed]
  11. G. de Vine, D. S. Rabeling, B. J. J. Slagmolen, T. T. Y. Lam, S. Chua, D. M. Wuchenich, D. E. McClelland, and D. A. Shaddock, “Picometer level displacement metrology with digitally enhanced heterodyne interferometry,” Opt. Express17, 828–837 (2009). [CrossRef] [PubMed]
  12. J. Miller, S. Ngo, A. J. Mullavey, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, “Control and tuning of a suspended Fabry-Perot cavity using digitally enhanced heterodyne interferometry,” Opt. Lett.37, 4952–4954 (2012). [CrossRef] [PubMed]
  13. E. H. Dinan and B. Jabbari, “Spreading codes for direct sequence CDMA and wideband CDMA cellular networks,” IEEE Commun. Mag.36, 48–54 (1998). [CrossRef]
  14. A. J. Sutton, O. Gerberding, G. Heinzel, and D. A. Shaddock, “Digitally enhanced homodyne interferometry,” Opt. Express20, 22195–22207 (2012). [CrossRef] [PubMed]
  15. P. Hariharan, B. F. Oreb, and N. Brown, “A digital phase-measurement system for real-time holographic interferometry,” Opt. Commun.41(6), 393–396 (1982). [CrossRef]
  16. W. M. Folkner, G. deVine, W. M. Klipstein, K. McKenzie, R. Spero, R. Thompson, N. Yu, M. Stephens, J. Leitch, R. Pierce, T. T.-Y. Lam, and D. A. Shaddock, “Laser frequency stabilization for GRACE-2,” in Proceedings of the 2011 Earth Science Technology Forum(2011).
  17. http://www.orbitslightwave.com .
  18. B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, “Intersatellite laser ranging instrument for the grace follow-on mission,” J. Geod.86, 1083–1095 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited