OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18177–18185

Dynamics of a short cavity swept source OCT laser

S. Slepneva, B. O’Shaughnessy, B. Kelleher, S.P. Hegarty, A. Vladimirov, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18177-18185 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (935 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the behaviour of a short cavity swept source laser with an intra cavity swept filter both experimentally and theoretically. We characterise the behaviour of the device with real-time intensity measurements using a fast digital oscilloscope, showing several distinct regimes, most notably regions of mode-hopping, frequency sliding mode-locking and chaos. A delay differential equation model is proposed that shows close agreement with the experimental results. The model is also used to determine important quantities such as the minimum and maximum sweep speeds for the mode-locking regime. It is also shown that by varying the filter width the maximum sweep speed can be increased but at a cost of increasing the instantaneous linewidth. The consequent impacts on optical coherence tomography applications are analysed.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(140.3430) Lasers and laser optics : Laser theory
(140.3600) Lasers and laser optics : Lasers, tunable

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 6, 2014
Revised Manuscript: June 28, 2014
Manuscript Accepted: June 30, 2014
Published: July 21, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

S. Slepneva, B. O’Shaughnessy, B. Kelleher, S.P. Hegarty, A. Vladimirov, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, "Dynamics of a short cavity swept source OCT laser," Opt. Express 22, 18177-18185 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Bilenca, S. H. Yun, G. J. Tearney, and B. Bouma, “Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications,” Opt. Lett.31, 760–762 (2006). [CrossRef] [PubMed]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and , “Optical coherence tomography,” Science254, 1178–1181 (1991). [CrossRef] [PubMed]
  3. E. A. Swanson, J. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Optics letters18, 1864–1866 (1993). [CrossRef] [PubMed]
  4. V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, G. van Bochove, and , “Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application,” European heart journal34, 875–885 (2013). [CrossRef]
  5. Y. Nakajima, Y. Shimada, A. Sadr, I. Wada, M. Miyashin, Y. Takagi, J. Tagami, and Y. Sumi, “Detection of occlusal caries in primary teeth using swept source optical coherence tomography,” Journal of Biomedical Optics19, 016020 (2014). [CrossRef]
  6. B. H. Lee, E. J. Min, and Y. H. Kim, “Fiber-based optical coherence tomography for biomedical imaging, sensing, and precision measurements,” Optical Fiber Technology19, 729–740 (2013). [CrossRef]
  7. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Optics Express11, 2183–2189 (2003). [CrossRef] [PubMed]
  8. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomedical Optics Express4, 1890–1908 (2013). [CrossRef] [PubMed]
  9. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14, 3225–3237 (2006). [CrossRef] [PubMed]
  10. M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” in “BiOS,” (International Society for Optics and Photonics, 2010), pp. 75541F.
  11. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source oct with vertical-cavity surface emitting lasers,” Biomedical Optics Express3, 2733 (2012). [CrossRef] [PubMed]
  12. E. Avrutin and L. Zhang, “Dynamics of semiconductor lasers under fast intracavity frequency sweeping,” in Transparent Optical Networks (ICTON), 2012 14th International Conference on, (IEEE, 2012), pp. 1–4.
  13. W. Atia, M. Kuznetsov, and D. Flanders, “Linearized swept laser source for optical coherence analysis system,” (2009). US Patent App. 12/027,710.
  14. B. Johnson and D. Flanders, “Laser swept source with controlled mode locking for OCT medical imaging,” (2013). EP Patent App. EP20,110,808,812.
  15. S. Slepneva, B. Kelleher, B. O’Shaughnessy, S.P. Hegarty, A. Vladimirov, and G. Huyet, “Dynamics of Fourier domain mode-locked lasers,” Opt. Express21, 19240–19251 (2013). [CrossRef] [PubMed]
  16. A.G. Vladimirov and D. Turaev, “Model for passive mode-locking in semiconductor lasers,” Phys. Rev. A72, 033808 (2005). [CrossRef]
  17. A. Vladimirov, D. Turaev, and G. Kozyreff, “Delay differential equations for mode-locked semiconductor lasers,” Opt. Lett.29, 1221–1223 (2004). [CrossRef] [PubMed]
  18. A.G. Vladimirov and D. Turaev, “A new model for a mode-locked semiconductor laser,” Radiophys. and Quantum Electronics47, 769–776 (2004). [CrossRef]
  19. C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express17, 24013–24019 (2009). [CrossRef]
  20. R. Huber, M. Wojtkowski, K. Taira, and J.G. Fujimoto, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13, 3513–3528 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited