OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18203–18213

Design of phase shifting algorithms: fringe contrast maximum

Yangjin Kim, Kenichi Hibino, Naohiko Sugita, and Mamoru Mitsuishi  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18203-18213 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2730 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In phase shifting interferometry, the fringe contrast is preferred to be at a maximum when there is no phase shift error. In the measurement of highly-reflective surfaces, the signal contrast is relatively low and the measurement would be aborted when the contrast falls below a threshold value. The fringe contrast depends on the design of the phase shifting algorithm. The condition for achieving the fringe contrast maximum is derived as a set of linear equations of the sampling amplitudes. The minimum number of samples necessary for constructing an error-compensating algorithm that is insensitive to the jth harmonic component and to the phase shift error is discussed. As examples, two new algorithms (15-sample and (3N2)-sample) were derived that are useful for the measurement for highly-reflective surfaces.

© 2014 Optical Society of America

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 9, 2014
Revised Manuscript: June 21, 2014
Manuscript Accepted: June 27, 2014
Published: July 21, 2014

Yangjin Kim, Kenichi Hibino, Naohiko Sugita, and Mamoru Mitsuishi, "Design of phase shifting algorithms: fringe contrast maximum," Opt. Express 22, 18203-18213 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt.13(11), 2693–2703 (1974). [CrossRef] [PubMed]
  2. K. Creath, “Phase measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1988).
  3. P. Carre, “Installation et utilisation du comparateur photoelectrique et interferential du Bureau International des Poids et Mesures,” Metrologia2(1), 13–23 (1966). [CrossRef]
  4. J. C. Wyant, “Use of an ac heterodyne lateral shear interferometer with real-time wavefront correction systems,” Appl. Opt.14(11), 2622–2626 (1975). [CrossRef] [PubMed]
  5. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt.22(21), 3421–3432 (1983). [CrossRef] [PubMed]
  6. J. E. Greivenkamp, “Generalized data reduction for heterodyne interferometry,” Opt. Eng.23(4), 350–352 (1984). [CrossRef]
  7. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt.26(13), 2504–2506 (1987). [CrossRef] [PubMed]
  8. K. G. Larkin and B. F. Oreb, “Design and assessment of symmetrical phase-shifting algorithms,” J. Opt. Soc. Am. A9(10), 1740–1748 (1992). [CrossRef]
  9. Y. Surrel, “Phase stepping: a new self-calibrating algorithm,” Appl. Opt.32(19), 3598–3600 (1993). [CrossRef] [PubMed]
  10. K. Hibino, B. F. Oreb, D. I. Farrant, and K. G. Larkin, “Phase-shifting for nonsinusoidal waveforms with phase-shift errors,” J. Opt. Soc. Am. A12(4), 761–768 (1995). [CrossRef]
  11. J. Schmit and K. Creath, “Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry,” Appl. Opt.34(19), 3610–3619 (1995). [CrossRef] [PubMed]
  12. P. Groot, “Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window,” Appl. Opt.34(22), 4723–4730 (1995). [CrossRef] [PubMed]
  13. Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt.35(1), 51–60 (1996). [CrossRef] [PubMed]
  14. K. Hibino, B. F. Oreb, D. I. Farrant, and K. G. Larkin, “Phase shifting algorithms for nonlinear and spatially nonuniform phase shifts,” J. Opt. Soc. Am. A14(4), 918–930 (1997). [CrossRef]
  15. K. Hibino, “Error-compensating phase measuring algorithms in a Fizeau interferometer,” Opt. Rev.6(6), 529–538 (1999). [CrossRef]
  16. P. de Groot, “Measurement of transparent plates with wavelength-tuned phase-shifting interferometry,” Appl. Opt.39(16), 2658–2663 (2000). [CrossRef] [PubMed]
  17. K. Hibino, B. F. Oreb, and P. S. Fairman, “Wavelength-scanning interferometry of a transparent parallel plate with refractive-index dispersion,” Appl. Opt.42(19), 3888–3895 (2003). [CrossRef] [PubMed]
  18. K. Hibino, B. F. Oreb, P. S. Fairman, and J. Burke, “Simultaneous measurement of surface shape and variation in optical thickness of a transparent parallel plate in wavelength-scanning Fizeau interferometer,” Appl. Opt.43(6), 1241–1249 (2004). [CrossRef] [PubMed]
  19. R. Hanayama, K. Hibino, S. Warisawa, and M. Mitsuishi, “Phase measurement algorithm in wavelength scanned Fizeau interferometer,” Opt. Rev.11(5), 337–343 (2004). [CrossRef]
  20. K. A. Stetson and W. R. Brohinsky, “Electro-optic holography and its application to hologram interferometry,” Appl. Opt.24(21), 3631–3637 (1985). [CrossRef] [PubMed]
  21. K. Freischlad and C. L. Koliopoulos, “Fourier description of digital phase-shifting algorithms,” J. Opt. Soc. Am. A7, 542–551 (1990). [CrossRef]
  22. A. Dobroiu, D. Apostol, V. Nascov, and V. Damian, “Self-calibrating algorithm for three-sample phase-shift interferometry by contrast levelling,” Meas. Sci. Technol.9(5), 744–750 (1998). [CrossRef]
  23. K. Patorski, Z. Sienicki, and A. Styk, “Phase-shifting method contrast calculations in time-averaged interferometry: error analysis,” Opt. Eng.44(6), 065601 (2005). [CrossRef]
  24. C. S. Vikram, “Phase error effect on contrast measurement in Schwider-Hariharan phase-shifting algorithm,” Optik (Stuttg.)112(3), 140–141 (2001). [CrossRef]
  25. R. Juarez-Salazar, C. Robledo-Sanchez, F. Guerrero-Sanchez, and A. Rangel-Huerta, “Generalized phase-shifting algorithm for inhomogeneous phase shift and spatio-temporal fringe visibility variation,” Opt. Express22(4), 4738–4750 (2014). [CrossRef] [PubMed]
  26. A. Téllez-Quiñones, D. Malacara-Doblado, and J. García-Márquez, “Phase-shifting algorithms for a finite number of harmonics: first-order analysis by solving linear systems,” J. Opt. Soc. Am. A29(4), 431–441 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited