## Generation of non-classical states of mirror motion in the single-photon strong-coupling regime |

Optics Express, Vol. 22, Issue 15, pp. 18254-18267 (2014)

http://dx.doi.org/10.1364/OE.22.018254

Enhanced HTML Acrobat PDF (1339 KB)

### Abstract

When a trichromatic laser field is applied to a cavity optomechanical system within the single-photon strong-coupling regime, we find that the motion of mirror can evolve into a dark state such that the cavity field mode cannot absorb energy from the external field. Via tuning three components of the pumping field to be resonant to the carrier, red-sideband and blue-sideband transitions in the displaced representation respectively, the state of mirror motion can exhibit non-classical properties, such as that in the Lamb-Dicke limit, the state evolves into a squeezed coherent state, and beyond the limit, the state can become a squeezed non-Gaussian state.

© 2014 Optical Society of America

**OCIS Codes**

(220.4880) Optical design and fabrication : Optomechanics

(140.3518) Lasers and laser optics : Lasers, frequency modulated

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: May 30, 2014

Revised Manuscript: July 8, 2014

Manuscript Accepted: July 9, 2014

Published: July 21, 2014

**Citation**

Wen-ju Gu, Gao-xiang Li, Shao-ping Wu, and Ya-ping Yang, "Generation of non-classical states of mirror motion in the single-photon strong-coupling regime," Opt. Express **22**, 18254-18267 (2014)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18254

Sort: Year | Journal | Reset

### References

- J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011). [CrossRef] [PubMed]
- Z. Q. Yin, “Phase noise and laser-cooling limits of optomechanical oscillators,” Phys. Rev. A 80, 033821 (2009). [CrossRef]
- J. Zhang, Y. X. Liu, and F. Nori, “Cooling and squeezing the fluctuations of a nanomechanical beam by indirect quantum feedback control,” Phys. Rev. A 79, 052102 (2009). [CrossRef]
- Y. Li, L. A. Wu, and Z. D. Wang, “Fast ground-state cooling of mechanical resonators with time-dependent optical cavities,” Phys. Rev. A 83, 043804 (2011). [CrossRef]
- F. Khalili, S. Danilishin, H. X. Miao, H. Müller-Ebhardt, H. Yang, and Y. B. Chen, “Preparing a mechanical oscillator in non-gaussian quantum states,” Phys. Rev. Lett. 105, 070403 (2010). [CrossRef] [PubMed]
- D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-driven cavity optomechanics,” Nature 488, 476–480 (2012). [CrossRef] [PubMed]
- Y. D. Wang and A. A. Clerk, “Reservoir-engineered entanglement in optomechanical systems,” Phys. Rev. Lett. 110, 253601 (2013). [CrossRef] [PubMed]
- T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007). [CrossRef] [PubMed]
- C. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693–1708 (1981). [CrossRef]
- H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008). [CrossRef] [PubMed]
- B. Kraus and J. I. Cirac, “Discrete entanglement distribution with squeezed light,” Phys. Rev. Lett. 92, 013602 (2004). [CrossRef] [PubMed]
- M. Paternostro, W. Son, and M. S. Kim, “Complete conditions for entanglement transfer,” Phys. Rev. Lett. 92, 197901 (2004). [CrossRef] [PubMed]
- W. J. Gu, G. X. Li, and Y. P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013). [CrossRef]
- S. Bose, K. Jacobs, and P. L. Knight, “Preparation of nonclassical states in cavities with a moving mirror,” Phys. Rev. A 56, 4175–4186 (1997). [CrossRef]
- S. Rips, M. Kiffner, I. Wilson-Rae, and M. J. Hartmann, “Steady-state negative Wigner functions of nonlinear nanomechanical oscillators,” New J. Phys. 14, 023042 (2012). [CrossRef]
- I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007). [CrossRef] [PubMed]
- F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007). [CrossRef] [PubMed]
- K. W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008). [CrossRef]
- F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein Condensate,” Science 322, 235–238 (2008). [CrossRef] [PubMed]
- A. H. Safavi-Naeini, J. Chan, J. T. Hill, Thiago P. Mayer Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012). [CrossRef] [PubMed]
- S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef] [PubMed]
- T. T. Heikkilä, F. Massel, J. Tuorila, R. Khan, and M. A. Sillanpää, “Enhancing optomechanical coupling via the Josephson effect,” arXiv:1311.3802.
- A. J. Rimberg, M. P. Blencowe, A. D. Armour, and P. D. Nation, “A cavity-Cooper pair transistor scheme for investigating quantum optomechanics in the ultra-strong coupling regime,” New J. Phys. 16, 055008 (2014). [CrossRef]
- J. Eisert, S. Scheel, and M. B. Plenio, “Distilling gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002). [CrossRef] [PubMed]
- X. X. Ren, H. K. Li, M. Y. Yan, Y. C. Liu, Y. F. Xiao, and Q. H. Gong, “Single-photon transport and mechanical NOON-state generation in microcavity optomechanics,” Phys. Rev. A 87, 033807 (2013). [CrossRef]
- P. Rabl, “Photon blockade effect in optomechanical systems,” Phys. Rev. Lett. 107, 063601 (2011). [CrossRef] [PubMed]
- U. Akram, W. P. Bowen, and G. J. Milburn, “Entangled mechanical cat states via conditional single photon optomechanics,” New J. Phys. 15, 093007 (2013). [CrossRef]
- G. F. Xu and C. K. Law, “Dark states of a moving mirror in the single-photon strong-coupling regime,” Phys. Rev. A 87, 053849 (2013). [CrossRef]
- G. S. Agarwal and Sumei Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803(R) (2010). [CrossRef]
- H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012). [CrossRef]
- S. Huang and G. S. Agarwal, “Electromagnetically induced transparency with quantized fields in optocavity mechanics,” Phys. Rev. A 83, 043826 (2011). [CrossRef]
- A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011). [CrossRef] [PubMed]
- A. Mari and J. Eisert, “Gently modulating optomechanical systems,” Phys. Rev. Lett. 103, 213603 (2009). [CrossRef]
- A. Farace and V. Giovannetti, “Enhancing quantum effects via periodic modulations in optomechanical systems,” Phys. Rev. A 86, 013820 (2012). [CrossRef]
- W. J. Gu and G. X. Li, “Squeezing of the mirror motion via periodic modulations in a dissipative optomechanical system,” Opt. Express 21, 020423 (2013). [CrossRef]
- M. R. Vanner, “Selective linear or quadratic optomechanical coupling via measurement,” Phys. Rev. X 1, 021011 (2011).
- F. A. M. de Oliveira, M. S. Kim, P. L. Knight, and V. Buzek, “Properties of displaced number states,” Phys. Rev. A 41, 2645–2652 (1990). [CrossRef] [PubMed]
- A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett. 107, 063602 (2011). [CrossRef] [PubMed]
- M. E. A. El-Mikkawy, “On the inverse of a general tridiagonal matrix,” Appl. Math. Comput. 150, 669–679 (2004). [CrossRef]
- J. S. Peng and G. X. Li, Introduction to Modern Quantum Optics (World Scientific, 1998).
- P. Rabl, A. Shnirman, and P. Zoller, “Generation of squeezed states of nanomechanical resonators by reservoir engineering,” Phys. Rev. B 70, 205304 (2004). [CrossRef]
- S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics (Clarendon, 1997).
- U. Leonhardt, Measuring the Quantum State of Light (Cambridge University, 1997).
- R. L. Hudson, “When is the wigner quasi-probability density non-negative?” Rep. Math. Phys. 6, 249–252 (1974). [CrossRef]
- J. Qian, A. A. Clerk, K. Hammerer, and F. Marquardt, “Quantum signatures of the optomechanical instability,” Phys. Rev. Lett. 109, 253601 (2012). [CrossRef]
- P. D. Nation, “Nonclassical mechanical states in an optomechanical micromaser analog,” Phys. Rev. A 88, 053828 (2013). [CrossRef]
- N. Lörch, J. Qian, A. Clerk, F. Marquardt, and K. Hammerer, “Laser theory for optomechanics: limit cycles in the quantum regime,” Phys. Rev. X 4, 011015 (2014).
- W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum-nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005). [CrossRef]
- J. Fiurášek, L. Mišta, and R. Filip, “Entanglement concentration of continuous-variable quantum states,” Phys. Rev. A 67, 022304 (2003). [CrossRef]
- T. Tyc and N. Korolkova, “Highly non-Gaussian states created via cross-Kerr nonlinearity,” New. J. Phys. 10, 023041 (2008). [CrossRef]
- M. J. Woolley and A. A. Clerk, “Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir,” Phys. Rev. A 89, 063805 (2014). [CrossRef]
- R. L. de, M. Filho, and W. Vogel, “Nonliear coherent states,” Phys. Rev. A 54, 4560–4563 (1996). [CrossRef]
- E. V. Shchukin and W. Vogel, “Nonclassical moments and their measurement,” Phys. Rev. A 72, 043808 (2005). [CrossRef]
- Y. Greenberg, Y. A. Pashkin, and E. II’ichev, “Nanomechanical resonators,” Phys.-Usp. 55, 382 (2012). [CrossRef]
- M. R. Vanner, I. Pikovski, and M. S. Kim, “Towards optomechanical quantum state reconstruction of mechanical motion,” arXiv:1406.1013.

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.