OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18284–18289

Continuously tunable Yb:KYW femtosecond oscillator based on a tunable highly dispersive semiconductor mirror

P. Wnuk, P. Wasylczyk, Ł. Zinkiewicz, M. Dems, K. Hejduk, K. Regiński, A. Wójcik-Jedlińska, and A. Jasik  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18284-18289 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (688 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optimized nonuniform growth process was used to achieve spatially dependent reflectivity and dispersions characteristics in a highly dispersive semiconductor mirror. The mirror, together with a semiconductor saturable absorber mirror (SESAM), was used to demonstrate a tunable femtosecond Yb:KYW oscillator. In the passive modelocking regime the laser could be continuously tuned over 3.5 nm spectral band around 1032 nm with high resolution, maintaining the average output power above 140 mW.

© 2014 Optical Society of America

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.6000) Materials : Semiconductor materials
(130.2035) Integrated optics : Dispersion compensation devices
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 6, 2014
Revised Manuscript: July 2, 2014
Manuscript Accepted: July 3, 2014
Published: July 21, 2014

P. Wnuk, P. Wasylczyk, Ł. Zinkiewicz, M. Dems, K. Hejduk, K. Regiński, A. Wójcik-Jedlińska, and A. Jasik, "Continuously tunable Yb:KYW femtosecond oscillator based on a tunable highly dispersive semiconductor mirror," Opt. Express 22, 18284-18289 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  2. J. Sytsma, J. M. Vroom, C. J. De Grauw, and H. C. Gerritsen, “Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation,” J. Microsc. 191(1), 39–51 (1998). [CrossRef]
  3. C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter 50(20), 15337–15348 (1994). [CrossRef] [PubMed]
  4. E. A. De Souza, M. C. Nuss, W. H. Knox, and D. A. B. Miller, “Wavelength-division multiplexing with femtosecond pulses,” Opt. Lett. 20(10), 1166–1168 (1995). [CrossRef] [PubMed]
  5. K. Lee, R. H. Kim, D. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008). [CrossRef]
  6. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroad-band femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994). [CrossRef]
  7. N. H. Rizvi, P. M. W. French, and J. R. Taylor, “50-fs pulse generation from a self-starting cw passively mode-locked Cr:LiSrAlF6 laser,” Opt. Lett. 17(12), 877–879 (1992). [CrossRef] [PubMed]
  8. P. Wasylczyk, P. Wnuk, and C. Radzewicz, “Passively modelocked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate,” Opt. Express 17(7), 5630–5635 (2009). [CrossRef] [PubMed]
  9. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994). [CrossRef] [PubMed]
  10. V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5-fs pulses,” Opt. Express 17(4), 2207–2217 (2009). [CrossRef] [PubMed]
  11. V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008). [CrossRef] [PubMed]
  12. A. Jasik, M. Dems, P. Wnuk, P. Wasylczyk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “Design and fabrication of highly dispersive semiconductor double-chirped mirrors,” Appl. Phys. B 116, 141–146 (2014).
  13. S. Zhu, “Birefringent filter with tilted optic axis for tuning dye lasers: theory and design,” Appl. Opt. 29(3), 410–415 (1990). [CrossRef] [PubMed]
  14. Y. Saito, K. Shimodaira, A. Nomura, and T. Kano, “Dye-mixture laser tunable in three primary color regions with a linear variable filter,” Appl. Opt. 34(3), 432–434 (1995). [CrossRef] [PubMed]
  15. P. Lavigne, N. McCarthy, and J.-G. Demers, “Design and characterization of complementary Gaussian reflectivity mirrors,” Appl. Opt. 24(16), 2581–2586 (1985). [CrossRef] [PubMed]
  16. C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991). [CrossRef]
  17. N. Matuschek, F. X. Kärtner, and U. Keller, “Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,” IEEE J. Quantum Electron. 35(2), 129–137 (1999). [CrossRef]
  18. A. Jasik, P. Wasylczyk, P. Wnuk, M. Dems, A. Wojcik-Jedlinska, K. Reginski, L. Zinkiewicz, and K. Hejduk, “Tunable semiconductor double-chirped mirror with high negative dispersion,” IEEE Photon. Technol. Lett. 26(1), 14–17 (2014). [CrossRef]
  19. A. P. Kovács, K. Osvay, Z. Bor, and R. Szipöcs, “Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry,” Opt. Lett. 20(7), 788–790 (1995). [CrossRef] [PubMed]
  20. A. Wójcik, T. J. Ochalski, J. Muszalski, E. Kowalczyk, K. Goszczyński, and M. Bugajski, “Photoluminescence mapping and angle-resolved photoluminescence of MBE-grown InGaAs/GaAs RC LED and VCSEL structures,” Thin Solid Films 412(1–2), 114–121 (2002). [CrossRef]
  21. A. Jasik, P. Wasylczyk, M. Dems, P. Wnuk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “A passively mode-locked, self-starting femtosecond Yb:KYW laser with a single highly dispersive semiconductor double-chirped mirror for dispersion compensation,” Laser Phys. Lett. 10(8), 085302 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited