OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18290–18298

Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites

S. V. Zhukovsky, T. Ozel, E. Mutlugun, N. Gaponik, A. Eychmuller, A. V. Lavrinenko, H. V. Demir, and S. V. Gaponenko  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18290-18298 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2865 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically demonstrate that nanocomposites made of colloidal semiconductor quantum dot monolayers placed between metal nanoparticle monolayers can function as multilayer hyperbolic metamaterials. Depending on the thickness of the spacer between the quantum dot and nanoparticle layers, the effective permittivity tensor of the nanocomposite is shown to become indefinite, resulting in increased photonic density of states and strong enhancement of quantum dot luminescence. This explains the results of recent experiments [T. Ozel et al., ACS Nano 5, 1328 (2011)] and confirms that hyperbolic metamaterials are capable of increasing the radiative decay rate of emission centers inside them. The proposed theoretical framework can also be used to design quantum-dot/nanoplasmonic composites with optimized luminescence enhancement.

© 2014 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: March 21, 2014
Revised Manuscript: May 27, 2014
Manuscript Accepted: July 6, 2014
Published: July 22, 2014

S. V. Zhukovsky, T. Ozel, E. Mutlugun, N. Gaponik, A. Eychmuller, A. V. Lavrinenko, H. V. Demir, and S. V. Gaponenko, "Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites," Opt. Express 22, 18290-18298 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett.84(13), 2244–2246 (2004). [CrossRef]
  2. M. A. Noginov, H. Li, Yu. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett.35(11), 1863–1865 (2010). [CrossRef] [PubMed]
  3. Z. Jacob, J.-Y. Kim, G.V. Naik, A. Boltasseva, E.E. Narimanov, and V.M. Shalaev, “Engineering the photonic density of states with metamaterials,” Appl. Phys. B100(1), 215–218 (2010). [CrossRef]
  4. Z. Jacob, I. I. Smolyaninov, and E.E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett.100(18), 181105 (2012). [CrossRef]
  5. C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express21(12), 14988–15013 (2013). [CrossRef] [PubMed]
  6. Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express21(12), 15014–15019 (2013). [CrossRef] [PubMed]
  7. T. Morgado, S. I. Maslovski, and M. G. Silveirinha, “Ultrahigh Casimir interaction torque in nanowire systems,” Opt. Express21(12), 14943–14955 (2013). [CrossRef] [PubMed]
  8. G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, “Optical vortices during a superresolution process in a metamaterial,” Phys. Rev. A77(4), 043825 (2008). [CrossRef]
  9. N. Mattiucci, G. D’Aguanno, M. Scalora, M. J. Bloemer, and C. Sibilia, “Transmission function properties for multi-layered structures: Application to super-resolution,” Opt. Express17(20), 17517–17529 (2009). [CrossRef] [PubMed]
  10. S. Ramakrishna, J. Pendry, M. Wiltshire, and W. Stewart, “Imaging the near field,” J. Mod. Opt.50(9), 1419–1430 (2003). [CrossRef]
  11. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  12. N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep.3, 3203 (2013). [CrossRef] [PubMed]
  13. E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” Opt. Express21(12), 14956–14961 (2013). [CrossRef] [PubMed]
  14. I. I. Smolyaninov and E. E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett.105(6), 067402 (2010). [CrossRef] [PubMed]
  15. I. I. Smolyaninov and Yu-Ju Hung, “Modeling of time with metamaterials,” J. Opt. Soc. Am. B28(7), 1591–1595 (2011). [CrossRef]
  16. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012). [CrossRef]
  17. V. Drachev, V. A. Podolskiy, and A. V. Kildishev, “Hyperbolic Metamaterials: new physics behind a classical problem,” Opt. Express21(12), 15048–15064 (2013). [CrossRef] [PubMed]
  18. M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett.94(15), 151105 (2009). [CrossRef]
  19. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Opt. Lett.36(13), 2530–2532 (2011). [CrossRef] [PubMed]
  20. A. N. Poddubny, P. A. Belov, and Yu. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84(2), 023807 (2011). [CrossRef]
  21. I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Yu. Kivshar, “Spontaneous emission enhancement in metal-dielectric metamaterials,” Phys. Lett. A376(3), 185–187 (2012). [CrossRef]
  22. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A85(5), 053842 (2012). [CrossRef]
  23. D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment,” J. Phys. Chem. C116(19), 10723–10733 (2012). [CrossRef]
  24. J. Kim, V. P. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express20(7), 8100–8116 (2012). [CrossRef] [PubMed]
  25. S. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic metamaterials,” Opt. Express21(12), 14982–14987 (2013). [CrossRef] [PubMed]
  26. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett.2(12), 1449–1452 (2002). [CrossRef]
  27. M. Lunz, V. A. Gerard, Y. K. Gunko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers,” Nano Lett.11(8), 3341–3345 (2011). [CrossRef] [PubMed]
  28. T. Ozel, P. L. Hernandez Martinez, E. Mutlugun, O. Akin, S. Nizamoglu, I. O. Ozel, and H. V. Demir, “Observation of selective plasmon-exciton coupling in nonradiative energy transfer: Donor-selective vs. acceptor-selective plexcitons,” Nano Lett.13(6), 3065–3071 (2013). [CrossRef] [PubMed]
  29. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62(24), R16356 (2000). [CrossRef]
  30. M. Navarro-Cìa, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express17(20), 18184–18195 (2009). [CrossRef] [PubMed]
  31. T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmuller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano5(2), 1328–1334 (2011). [CrossRef] [PubMed]
  32. K. Dolgaleva and R. W. Boyd, “Local-field effects in nanostructured photonic materials,” Adv. Opt. Photon.4(1), 1–77 (2012). [CrossRef]
  33. J. H. Kim, J. H. Hwang, and T. Y. Lim, “A layer-by-layer self-assembly method for organic-inorganic hybrid multilayer thin films,” J. Ceram. Process. Res.10(6), 770–773 (2009).
  34. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda., “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science308(5726), 1296–1298 (2005). [CrossRef] [PubMed]
  35. A. F. Koenderink, M. Kafesaki, C. M. Soukolis, and V. Sandoghdar, “Spontaneous emission in the near field of two-dimensional photonic crystals,” Opt. Lett.30(23), 3210–3212 (2005). [CrossRef] [PubMed]
  36. S. V. Gaponenko, Introduction to Nanophotonics (Cambridge University Press, 2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited