OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18299–18309

Multicomponent gas analysis using broadband quantum cascade laser spectroscopy

A. Reyes-Reyes, Z. Hou, E. van Mastrigt, R. C. Horsten, J. C. de Jongste, M. W. Pijnenburg, H. P. Urbach, and N. Bhattacharya  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18299-18309 (2014)
http://dx.doi.org/10.1364/OE.22.018299


View Full Text Article

Enhanced HTML    Acrobat PDF (1949 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a broadband quantum cascade laser-based spectroscopic system covering the region between 850 and 1250 cm−1. Its robust multipass cavity ensures a constant interaction length over the entire spectral region. The device enables the detection and identification of numerous molecules present in a complex gas mixture without any pre-treatment in two minutes. We demonstrate that we can detect sub-ppmv concentration of acetone in presence of 2% of water at the same wavenumber region.

© 2014 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6390) Spectroscopy : Spectroscopy, molecular
(280.1545) Remote sensing and sensors : Chemical analysis
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Spectroscopy

History
Original Manuscript: April 11, 2014
Revised Manuscript: May 12, 2014
Manuscript Accepted: June 18, 2014
Published: July 22, 2014

Citation
A. Reyes-Reyes, Z. Hou, E. van Mastrigt, R. C. Horsten, J. C. de Jongste, M. W. Pijnenburg, H. P. Urbach, and N. Bhattacharya, "Multicomponent gas analysis using broadband quantum cascade laser spectroscopy," Opt. Express 22, 18299-18309 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18299


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Horvath and J. de Jongste, eds., Exhaled biomarkers. Eur. Respir. Mon. 2010:49 (European Respiratory Society, 2010).
  2. F. K. Tittel and R. Lewicki, “Tunable mid-infrared laser absorption spectroscopy,” in Semiconductor Lasers, A. Baranov and E. Tournie, eds. (Woodhead, 2013), pp. 579–630.
  3. A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semiconductor Sci. Technol.25, 083001 (2010). [CrossRef]
  4. G. N. Rao and A. Karpf, “External cavity tunable quantum cascade lasers and their applications to trace gas monitoring,” Appl. Opt.50, A100–A115 (2011). [CrossRef] [PubMed]
  5. J. H. van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy: Techniques and Applications, G. Berden and R. Engeln, eds. (John Wiley, 2009), pp. 28–34.
  6. D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photon. Rev.7, 188–206 (2013). [CrossRef]
  7. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90, 165–176 (2008). [CrossRef]
  8. M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, R. D. Stahl, J. T. Schiffern, and T. L. Myers, “Real-time trace gas sensing of fluorocarbons using a swept-wavelength external cavity quantum cascade laser,” Analyst139, 2047–2056 (2014). [CrossRef] [PubMed]
  9. A. A. Kosterev and F. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron.38, 582–591 (2002). [CrossRef]
  10. L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer110, 533–572 (2009). [CrossRef]
  11. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc.58, 1452–1461 (2004). [CrossRef] [PubMed]
  12. Block Engineering, “LaserScope user manual,” (2012).
  13. J. B. McManus, P. L. Kebabian, and M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt.34, 3336–3348 (1995). [CrossRef] [PubMed]
  14. G. O. Nelson, Gas Mixtures; Preparation and Control (Lewis, 1992).
  15. A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser,” Appl. Opt.41, 573–578 (2002). [CrossRef] [PubMed]
  16. A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, “Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt.41, 1169–1173 (2002). [CrossRef] [PubMed]
  17. S. E. Braslavsky, “Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006),” Pure Appl. Chem.79, 293–465 (2007). [CrossRef]
  18. E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B92, 467–474 (2008). [CrossRef]
  19. M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, and J. F. Schultz, “Ultra-trace chemical sensing with long-wave infrared cavity-enhanced spectroscopic sensors,” Pacific Northwest National Laboratory, Richland, Washington (Technical Report, 2003).
  20. A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol.20, 1527–1532 (1981). [CrossRef]
  21. D. Nelson, J. Shorter, J. McManus, and M. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B75, 343–350 (2002). [CrossRef]
  22. http://www.massflow-online.com/faqs/what-do-lnmin-lsmin-slm-and-sccm-stand-for/ .
  23. C. Deng, J. Zhang, X. Yu, W. Zhang, and X. Zhang, “Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization,” J. Chromatogr. B810, 269–275 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited