OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18325–18334

Local frequency and envelope estimation by Teager-Kaiser energy operators in white-light scanning interferometry

F. Salzenstein, P. Montgomery, and A. O. Boudraa  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18325-18334 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (833 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, a new method for surface extraction in white light scanning interferometry (WLSI) is introduced. The proposed extraction scheme is based on the Teager-Kaiser energy operator and its extended versions. This non-linear class of operators is helpful to extract the local instantaneous envelope and frequency of any narrow band AM-FM signal. Namely, the combination of the envelope and frequency information, allows effective surface extraction by an iterative re-estimation of the phase in association with a new correlation technique, based on a recent TK cross-energy operator. Through the experiments, it is shown that the proposed method produces substantially effective results in term of surface extraction compared to the peak fringe scanning technique, the five step phase shifting algorithm and the continuous wavelet transform based method. In addition, the results obtained show the robustness of the proposed method to noise and to the fluctuations of the carrier frequency.

© 2014 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.5070) Image processing : Phase retrieval
(100.3175) Image processing : Interferometric imaging
(100.4992) Image processing : Pattern, nonlinear correlators

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 12, 2014
Revised Manuscript: June 30, 2014
Manuscript Accepted: July 3, 2014
Published: July 22, 2014

F. Salzenstein, P. Montgomery, and A. O. Boudraa, "Local frequency and envelope estimation by Teager-Kaiser energy operators in white-light scanning interferometry," Opt. Express 22, 18325-18334 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. O’Mahony, M. Hill, M. Brunet, R. Duane, and A. Mathewson, “Characterization of micromechanical structures using white-light interferometry,” Measurement Sci. Technol. 14, 1807 (2003). [CrossRef]
  2. K. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” JOSA A 13, 832–843 (1996). [CrossRef]
  3. P. de Groot, X. C. de Lega, J. Kramer, and M. Turzhitsky, “Determination of fringe order in white-light interference microscopy,” App. Opt. 41, 4571–4578 (2002). [CrossRef]
  4. S. Ma, C. Quan, R. Zhu, C. Tay, L. Chen, and Z. Gao, “Micro-profile measurement based on windowed Fourier transform in white-light scanning interferometry,” Opt. Comm. 284, 2488–2493 (2011). [CrossRef]
  5. P. Sandoz, “Wavelet transform as a processing tool in white-light interferometry,” Opt. Lett. 22, 1065–1067 (1997). [CrossRef] [PubMed]
  6. M. Li, C. Quan, and C. Tay, “Continuous wavelet transform for micro-component profile measurement using vertical scanning interferometry,” Opt. Laser Technol. 40, 920–929 (2008). [CrossRef]
  7. Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” App. Opt. 43, 2695–2702 (2004). [CrossRef]
  8. H. Niu, C. Quan, and C. Tay, “Phase retrieval of speckle fringe pattern with carriers using 2D wavelet transform,” Opt. Lasers Eng. 47, 1334–1339 (2009). [CrossRef]
  9. J. Kaiser, “On a simple algorithm to calculate the energy of a signal,” in Proc. ICASSP, (1990), pp. 381–384.
  10. P. Maragos and A. Potamianos, “Higher order differential energy operators,” IEEE Sig. Proc. Lett. 2, 152–154 (1995). [CrossRef]
  11. P. Maragos, T. Quatieri, and J. Kaiser, “Energy separation in signal modulations with applications to speech analysis,” IEEE Trans. Sig. Proc. 41, 3024–3051 (1993). [CrossRef]
  12. P. Maragos and A. Bovik, “Image demodulation using multidimensional energy separation,” J. Opt. Soc. Am. A 12, 1867–1876 (1995). [CrossRef]
  13. A. Boudraa, F. Salzenstein, and J. Cexus, “Two-dimensional continuous higher-order energy operators,” Opt. Eng. 44, 7001–7010 (2005).
  14. K. Larkin, “Uniform estimation of orientation using local and nonlocal 2-D energy operators,” Opt. Express 13, 8097–8121 (2005). [CrossRef] [PubMed]
  15. F. Salzenstein, A. Boudraa, and T. Chonavel, “A new class of multi-dimensional Teager-Kaiser and higher order operators based on directional derivatives,” Multidimensional Sys. Sig. Proc. 24, 543–572 (2013). [CrossRef]
  16. J. Cexus and A. Boudraa, “Link between cross-Wigner distribution and cross-Teager energy operator,” Elect. Lett. 40, 778–780 (2004). [CrossRef]
  17. A. Boudraa, “Relationships between ΨB-energy operator and some time-frequency representations,” IEEE Sig. Proc. Lett. 17, 527–530 (2010). [CrossRef]
  18. A. Boudraa, T. Chonavel, and J. Cexus, “ΨB-energy operator and cross-power spectral density,” Sig. Proc. 94, 236–240 (2014). [CrossRef]
  19. A. Boudraa, J. Cexus, and K. Abed-Meraim, “Cross-ΨB-energy operator-based signal detection,” JASA 123, 4283–4289 (2008). [CrossRef]
  20. F. Salzenstein, P. Montgomery, D. Montaner, and A. Boudraa, “Teager-Kaiser energy and higher order operators in white light interference microscopy for surface shape measurement,” J. Appl. Sig. Proc. 17, 2804–2815 (2005). [CrossRef]
  21. S. Petitgrand, “Méthodes de microscopie interférométrique 3D statiques et dynamiques pour la caractérisation de la technologie et du comportement des microsystèmes,” Ph.D. thesis (2005).
  22. A. Boudraa, S. Benramdane, J. Cexus, and T. Chonavel, “Some useful properties of cross-ΨB energy operator,” Int. J. Electron. Comm. 63, 728–735 (2009). [CrossRef]
  23. A. Boudraa, J. Cexus, M. Groussat, and P. Brunagel, “An energy-based similarity measure for time series,” Adv. Sig. Proc. 135892, 1–8 (2008).
  24. W. Zhang, C. Liu, and H. Yan, “Clustering of temporal gene expression data by regularized spline regression an energy based similarity measure,” Patt. Recong. 43, 3969–3976 (2010). [CrossRef]
  25. P. Hariharan, B. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504–2506 (1987). [CrossRef] [PubMed]
  26. P. Montgomery and J. Fillard, “Peak fringe scanning microscopy (pfsm): submicron 3d measurement of semiconductor components,” Interferometry: Techniques and Analysis pp. 12–23 (1755).
  27. R. Schafer, “What is a savitzky-golay filter?[lecture notes],” IEEE Sig. Proc. Mag. 28, 111–117 (2011). [CrossRef]
  28. J. Estrada, M. Servin, and J. Quiroga, “A self-tuning phase-shifting algorithm for interferometry,” Opt. Express 18, 2632–2638 (2010). [CrossRef] [PubMed]
  29. E. Halter, P. Montgomery, D. Montaner, R. Barillon, M. D. Nero, C. Galindo, and S. Georg, “Characterization of inhomogeneous colloidal layers using adapted coherence probe microscopy,” Appl. Surf. Sci. 256, 6144–6152 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited