OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18354–18364

Generation of non-diffractive Bessel beams by inward cylindrical traveling wave aperture distributions

M. Albani, S. C. Pavone, M. Casaletti, and M. Ettorre  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18354-18364 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1196 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The focusing capabilities of an inward cylindrical traveling wave aperture distribution and the non-diffractive behaviour of its radiated field are analyzed. The wave dynamics of the infinite aperture radiated field is clearly unveiled by means of closed form expressions, based on incomplete Hankel functions, and their ray interpretation. The non-diffractive behaviour is also confirmed for finite apertures up to a defined limited range. A radial waveguide made by metallic gratings over a ground plane and fed by a coaxial feed is used to validate numerically the analytical results. The proposed system and accurate analysis of non-diffractive Bessel beams launched by inward waves opens new opportunities for planar, low profile beam generators at microwaves, Terahertz and optics.

© 2014 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1960) Diffraction and gratings : Diffraction theory
(350.5500) Other areas of optics : Propagation

ToC Category:
Physical Optics

Original Manuscript: May 14, 2014
Revised Manuscript: June 12, 2014
Manuscript Accepted: June 17, 2014
Published: July 22, 2014

M. Albani, S. C. Pavone, M. Casaletti, and M. Ettorre, "Generation of non-diffractive Bessel beams by inward cylindrical traveling wave aperture distributions," Opt. Express 22, 18354-18364 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  2. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499 (1987). [CrossRef] [PubMed]
  3. M. Lapointe, “Review of non-diffracting Bessel beam experiments,” Opt. Laser Technol. 24, 315–321 (1992). [CrossRef]
  4. J. Arlt and K. Dholakia, “Generation of high-order Bessel-beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000). [CrossRef]
  5. R. M. Herman and T. A. Wiggins, “Production and uses of diffracionless beams,” J. Opt. Soc. Am. A 8, 932–942 (1991). [CrossRef]
  6. Z. Li, K. B. Alici, H. Caglayan, and E. Ozbay, “Generation of an axially asymmetric Bessel-like beam from a metallic subwavelength aperture,” Phys. Rev. Lett. 102, 143901 (2009). [CrossRef] [PubMed]
  7. W. B. Williams and J. B. Pendry, “Generating Bessel beams by use of localized modes,” J. Opt. Soc. Am. A 22, 992–997 (2005). [CrossRef]
  8. A. Mazzinghi, M. Balma, D. Devona, G. Guarnieri, G. Mauriello, M. Albani, and A. Freni, “Large depth of field pseudo-Bessel beam generation with a RLSA antenna,” IEEE Trans. Antennas Propag. (to be published).
  9. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000). [CrossRef]
  10. J. Salo, J. Fagerholm, A. T. Friberg, and M. M. Salomaa, “Unified description of nondiffracting X and Y waves,” Phys. Rev. A 62, 4261 (2000).
  11. M. Anguiano-Morales, M. M. Méndez-Otero, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Near field diffraction of Hankel beams,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper JSuA36. [CrossRef]
  12. M. Ettorre and A. Grbic, “Generation of propagating Bessel beams using leaky-wave modes,” IEEE Trans. Antennas Propag. 60, 3605–3613 (2012). [CrossRef]
  13. M. Ettorre, S. M. Rudolph, and A. Grbic, “Generation of propagating Bessel beams using leaky-wave modes: experimental validation,” IEEE Trans. Antennas Propag. 60, 2645–2653 (2012). [CrossRef]
  14. M. F. Inami and A. Grbic, “Generating Bessel beams using an electrically-large annular slot,” in Proceedings of IEEE AP-S/URSI-USNC Symposium (IEEE2013).
  15. S. Chávez-Cerda, “A new approach to Bessel beams,” J. Mod. Opt. 46, 923–930 (1999).
  16. S. Chávez-Cerda and G. H. C. New, “Evaluation of focused Hankel waves and Bessel beams,” Opt. Commun. 181, 369–377 (2000). [CrossRef]
  17. J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012). [CrossRef] [PubMed]
  18. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, Series on Electromagnetic Wave Theory (IEEE Press, 1994). [CrossRef]
  19. R. Cicchetti and A. Faraone, “Incomplete Hankel and modified Bessel functions: a class of special functions for electromagnetics,” IEEE Trans. Antennas Propag. 52, 3373–3389 (2004). [CrossRef]
  20. M. Albani, A. Mazzinghi, and A. Freni, “Automatic design of CP-RLSA antennas,” IEEE Trans. Antennas Propag. 60, 5538–5547 (2012). [CrossRef]
  21. M. Ettorre, M. Casaletti, G. Valerio, R. Sauleau, L. Le Coq, S. C. Pavone, and M. Albani, “On the near-field shaping and focusing capability of a radial line slot array,” IEEE Trans. Antennas Propag. 62, 1991–1999 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited