OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18365–18371

Experimental observation and analysis of all-fiber plasmonic double Airy beams

Chunying Guan, Ming Ding, Jinhui Shi, Ping Hua, Pengfei Wang, Libo Yuan, and Gilberto Brambilla  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18365-18371 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4129 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The propagation dynamics of all-fiber plasmonic double parallel and orthogonal Airy beams are experimentally demonstrated. Two slits and groove arrays were fabricated by focused ion beam (FIB) milling on the gold coated end facet of an optical fiber to generate two Airy beams simultaneously. Sub-wavelength self-focusing of double parallel Airy beams in free space is experimentally verified. Effects of geometrical parameters on the intensity profiles of the focal spot are analyzed in detail. The characteristics at the junction of the two main lobes can be adjusted by controlling the initial phase difference of the two Airy beams. The propagation of two orthogonal Airy beams is also experimentally investigated. Multi-Airy beams are of importance to realize all-fiber optical trapping, fiber integrated devices, and laser shaping.

© 2014 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(140.3300) Lasers and laser optics : Laser beam shaping
(230.3120) Optical devices : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: June 11, 2014
Revised Manuscript: July 9, 2014
Manuscript Accepted: July 10, 2014
Published: July 22, 2014

Chunying Guan, Ming Ding, Jinhui Shi, Ping Hua, Pengfei Wang, Libo Yuan, and Gilberto Brambilla, "Experimental observation and analysis of all-fiber plasmonic double Airy beams," Opt. Express 22, 18365-18371 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011). [CrossRef]
  2. W. M. Lee, X.-C. Yuan, and W. C. Cheong, “Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation,” Opt. Lett. 29(15), 1796–1798 (2004). [CrossRef] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  4. A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012). [CrossRef]
  5. I. Epstein and A. Arie, “Arbitrary Bending plasmonic light waves,” Phys. Rev. Lett. 112(2), 023903 (2014). [CrossRef] [PubMed]
  6. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008). [CrossRef]
  7. I. M. Besieris and A. M. Shaarawi, “A note on an accelerating finite energy Airy beam,” Opt. Lett. 32(16), 2447–2449 (2007). [CrossRef] [PubMed]
  8. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007). [CrossRef] [PubMed]
  9. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36(15), 2883–2885 (2011). [CrossRef] [PubMed]
  10. D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36(10), 1842–1844 (2011). [CrossRef] [PubMed]
  11. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense airy beams,” Science 324(5924), 229–232 (2009). [CrossRef] [PubMed]
  12. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33(3), 207–209 (2008). [CrossRef] [PubMed]
  13. Y. Fan, J. Wei, J. Ma, Y. Wang, and Y. Wu, “Tunable twin Airy beams induced by binary phase patterns,” Opt. Lett. 38(8), 1286–1288 (2013). [CrossRef] [PubMed]
  14. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005). [CrossRef] [PubMed]
  15. A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011). [CrossRef] [PubMed]
  16. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy Beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011). [CrossRef] [PubMed]
  17. I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109(20), 203903 (2012). [CrossRef] [PubMed]
  18. C. Y. Guan, M. Ding, J. H. Shi, P. F. Wang, P. Hua, L. B. Yuan, and G. Brambilla, “Compact all-fiber plasmonic Airy-like beam generator,” Opt. Lett. 39(5), 1113–1116 (2014). [CrossRef] [PubMed]
  19. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited