OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18379–18388

Digital multi-channel stabilization of four-mode phase-sensitive parametric multicasting

Lan Liu, Zhi Tong, Andreas O. J. Wiberg, Bill P. P. Kuo, Evgeny Myslivets, Nikola Alic, and Stojan Radic  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18379-18388 (2014)
http://dx.doi.org/10.1364/OE.22.018379


View Full Text Article

Enhanced HTML    Acrobat PDF (2095 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Stable four-mode phase-sensitive (4MPS) process was investigated as a means to enhance two-pump driven parametric multicasting conversion efficiency (CE) and signal to noise ratio (SNR). Instability of multi-beam, phase sensitive (PS) device that inherently behaves as an interferometer, with output subject to ambient induced fluctuations, was addressed theoretically and experimentally. A new stabilization technique that controls phases of three input waves of the 4MPS multicaster and maximizes CE was developed and described. Stabilization relies on digital phase-locked loop (DPLL) specifically was developed to control pump phases to guarantee stable 4MPS operation that is independent of environmental fluctuations. The technique also controls a single (signal) input phase to optimize the PS-induced improvement of the CE and SNR. The new, continuous-operation DPLL has allowed for fully stabilized PS parametric broadband multicasting, demonstrating CE improvement over 20 signal copies in excess of 10 dB.

© 2014 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(230.1150) Optical devices : All-optical devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 16, 2014
Revised Manuscript: July 4, 2014
Manuscript Accepted: July 5, 2014
Published: July 22, 2014

Citation
Lan Liu, Zhi Tong, Andreas O. J. Wiberg, Bill P. P. Kuo, Evgeny Myslivets, Nikola Alic, and Stojan Radic, "Digital multi-channel stabilization of four-mode phase-sensitive parametric multicasting," Opt. Express 22, 18379-18388 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18379


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8(3), 506–520 (2002). [CrossRef]
  2. J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: Technologies and applications in DWDM networks,” IEEE Commun. Mag.38(3), 86–92 (2000). [CrossRef]
  3. E. Ciaramella, “Wavelength conversion and all-optical regeneration: achievements and open Issues,” J. Lightwave Technol.30(4), 572–582 (2012). [CrossRef]
  4. B. P. P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer,” J. Lightwave Technol.29(23), 3515–3522 (2011). [CrossRef]
  5. E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express20(3), 3331–3344 (2012). [CrossRef] [PubMed]
  6. C. M. Caves, “Quantum limits on noise in linear-amplifiers,” Phys. Rev. D Part. Fields26(8), 1817–1839 (1982). [CrossRef]
  7. R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010). [CrossRef]
  8. B. Corcoran, S. L. I. Olsson, C. Lundstrom, M. Karlsson, and P. A. Andrekson, “Phase-sensitive optical pre-amplifier implemented in an 80 km DQPSK link,” Optical Fiber Communications Conference2012 Technical Digest, paper PDP5A. [CrossRef]
  9. T. Richter, R. Elschner, and C. Schubert, “QAM phase-regeneration in a phase-sensitive fiber-amplifier,” 39th European Conference and Exhibition on Optical Communication 2013, paper We3A2. [CrossRef]
  10. K. Croussore and G. F. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron.14(3), 648–658 (2008). [CrossRef]
  11. M. Asobe, T. Umeki, and O. Tadanaga, “Phase sensitive amplification with noise figure below the 3 dB quantum limit using CW pumped PPLN waveguide,” Opt. Express20(12), 13164–13172 (2012). [CrossRef] [PubMed]
  12. Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics5(7), 430–436 (2011). [CrossRef]
  13. M. Vasilyev, “Distributed phase-sensitive amplification,” Opt. Express13(19), 7563–7571 (2005). [CrossRef] [PubMed]
  14. T. Richter, B. Corcoran, S. L. I. Olsson, C. Lundstrom, M. Karlsson, C. Schubert, and P. A. Andrekson, “Experimental characterization of a phase-sensitive four-mode fiber-optic parametric amplifier,” 38th European Conference and Exhibition on Optical Communication 2012, paper Th1F1. [CrossRef]
  15. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Broadband parametric multicasting via four-mode phase-sensitive interaction,” Opt. Express20(17), 19363–19373 (2012). [CrossRef] [PubMed]
  16. C. J. McKinstrie, S. Radic, and M. G. Raymer, “Quantum noise properties of parametric amplifiers driven by two pump waves,” Opt. Express12(21), 5037–5066 (2004). [CrossRef] [PubMed]
  17. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves with dissimilar frequencies,” Opt. Lett.27(13), 1138–1140 (2002). [CrossRef] [PubMed]
  18. S. Radic and C. J. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol.9(1), 7–23 (2003). [CrossRef]
  19. L. Lan, T. Zhi, A. O. J. Wiberg, E. Myslivets, B. Kuo, N. Alic, and S. Radic, “Digital Phase-locked loop-stabilized four-mode phase-sensitive parametric multicasting,” 39th European Conference and Exhibition on Optical Communication 2013, paper We3A4. [CrossRef]
  20. Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,” IEEE Photon. Technol. Lett.10(11), 1560–1562 (1998). [CrossRef]
  21. Z. Tong, A. O. J. Wiberg, E. Myslivets, C. K. Huynh, B. P. P. Kuo, N. Alic, and S. Radic, “Noise performance of phase-insensitive frequency multicasting in parametric mixer with finite dispersion,” Opt. Express21(15), 17659–17669 (2013). [CrossRef] [PubMed]
  22. E. Myslivets, C. Lundstrom, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett.21(24), 1807–1809 (2009). [CrossRef]
  23. T. Sakamoto, G. W. Lu, A. Chiba, and T. Kawanishi, “Digital optical phase locked loop for real-time coherent demodulation of multilevel PSK/QAM,” Optical Fiber Communications Conference2010 Technical Digest, paper OMS5. [CrossRef]
  24. Y. X. Ma, P. Zhou, X. L. Wang, H. T. Ma, X. J. Xu, L. Si, Z. J. Liu, and Y. J. Zhao, “Coherent beam combination with single frequency dithering technique,” Opt. Lett.35(9), 1308–1310 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited