OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18389–18400

Microscopic approach to second harmonic generation in quantum cascade lasers

David O. Winge, Martin Lindskog, and Andreas Wacker  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18389-18400 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (801 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Second harmonic generation is analyzed from a microscopical point of view using a non-equilibrium Green’s function formalism. Through this approach the complete on-state of the laser can be modeled and results are compared to experiment with good agreement. In addition, higher order current response is extracted from the calculations and together with waveguide properties, these currents provide the intensity of the second harmonic in the structure considered. This power is compared to experimental results, also with good agreement. Furthermore, our results, which contain all coherences in the system, allow to check the validity of common simplified expressions.

© 2014 Optical Society of America

OCIS Codes
(190.4160) Nonlinear optics : Multiharmonic generation
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Nonlinear Optics

Original Manuscript: May 8, 2014
Revised Manuscript: June 17, 2014
Manuscript Accepted: June 18, 2014
Published: July 22, 2014

David O. Winge, Martin Lindskog, and Andreas Wacker, "Microscopic approach to second harmonic generation in quantum cascade lasers," Opt. Express 22, 18389-18400 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553 (1994). [CrossRef] [PubMed]
  2. M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwit, and J. S. Harris, “Observation of extremely large quadratic susceptibility at 9.6 – 10.8μm in electric-field-biased AlGaAs quantum wells,” Phys. Rev. Lett.62, 1041–1044 (1989). [CrossRef] [PubMed]
  3. E. Rosencher, A. Fiore, B. Winter, V. Berger, P. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science271, 168–173 (1996). [CrossRef]
  4. F. Capasso, C. Sirtori, and A. Y. Cho, “Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared,” IEEE J. Quantum Electron.30, 1313–1326 (1994). [CrossRef]
  5. M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics1, 288–292 (2007). [CrossRef]
  6. N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant second-order nonlinear optical processes in quantum cascade lasers,” Phys. Rev. Lett.90, 043902 (2003). [CrossRef] [PubMed]
  7. J.-Y. Bengloan, A. De Rossi, V. Ortiz, X. Marcadet, M. Calligaro, I. Maurin, and C. Sirtori, “Intracavity sum-frequency generation in GaAs quantum cascade lasers,” Appl. Phys. Lett.84, 2019–2021 (2004). [CrossRef]
  8. Y. Yao, J. A. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6, 432–439 (2012). [CrossRef]
  9. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics1, 517 (2007). [CrossRef]
  10. A. Wacker, “Quantum cascade laser: An emerging technology,” in Nonlinear Laser Dynamics, K. Lüdge, ed. (Wiley-VCH, 2011).
  11. Y.-H. Cho and A. Belyanin, “Short-wavelength infrared second harmonic generation in quantum cascade lasers,” J. Appl. Phys.107, 053116 (2010). [CrossRef]
  12. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, “Short wavelength (λ ∼ 3.4μm) quantum cascade laser based on strained compensated InGaAs/AlInAs,” Appl. Phys. Lett.72, 680 (1998). [CrossRef]
  13. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64, 1533 (2001). [CrossRef]
  14. F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. Myers, M. S. Taubman, R. Williams, C. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. Sergent, H. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron.38, 511–532 (2002). [CrossRef]
  15. C. Gmachl, A. Belyanin, D. L. Sivco, M. L. Peabody, N. Owschimikow, A. M. Sergent, F. Capasso, and A. Y. Cho, “Optimized second-harmonic generation in quantum cascade lasers,” IEEE J. Quantum Electron.39, 1345–1355 (2003). [CrossRef]
  16. A. Wacker, M. Lindskog, and D. Winge, “Nonequilibrium green’s function model for simulation of quantum cascade laser devices under operating conditions,” IEEE J. Sel. Top. Quantum Electron.99, 1200611 (2013).
  17. A. Gajić, J. Radovanović, V. Milanović, D. Indjin, and Z. Ikonić, “Genetic algorithm applied to the optimization of quantum cascade lasers with second harmonic generation,” J. Appl. Phys.115, 053712 (2014). [CrossRef]
  18. J. Bai and D. Citrin, “Optical and transport characteristics of quantum-cascade lasers with optimized second-harmonic generation,” IEEE J. Quantum Electron.43, 391–398 (2007). [CrossRef]
  19. F. Capasso, J. Faist, and C. Sirtori, “Mesoscopic phenomena in semiconductor nanostructures by quantum design,” J. Math. Phys.37, 4775 (1996). [CrossRef]
  20. D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonic, “Self-consistent scattering theory of transport and output characteristics of quantum cascade lasers,” J. Appl. Phys.91, 9019 (2002). [CrossRef]
  21. A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25, 083001 (2010). [CrossRef]
  22. Y. Petitjean, F. Destic, J. Mollier, and C. Sirtori, “Dynamic modeling of terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron.17, 22–29 (2011). [CrossRef]
  23. R. C. Iotti, E. Ciancio, and F. Rossi, “Quantum transport theory for semiconductor nanostructures: A density matrix formulation,” Phys. Rev. B72, 125347 (2005). [CrossRef]
  24. R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New J. Phys.12, 033045 (2010). [CrossRef]
  25. S. Kumar and Q. Hu, “Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers,” Phys. Rev. B80, 245316 (2009). [CrossRef]
  26. E. Dupont, S. Fathololoumi, and H. C. Liu, “Simplified density-matrix model applied to three-well terahertz quantum cascade lasers,” Phys. Rev. B81, 205311 (2010). [CrossRef]
  27. R. C. Iotti and F. Rossi, “Nature of charge transport in quantum-cascade lasers,” Phys. Rev. Lett.87, 146603 (2001). [CrossRef] [PubMed]
  28. H. Callebaut and Q. Hu, “Importance of coherence for electron transport in terahertz quantum cascade lasers,” J. Appl. Phys.98, 104505 (2005). [CrossRef]
  29. C. Jirauschek and P. Lugli, “Monte-carlo-based spectral gain analysis for terahertz quantum cascade lasers,” J. Appl. Phys.105, 123102 (2009). [CrossRef]
  30. S.-C. Lee and A. Wacker, “Nonequilibrium Green’s function theory for transport and gain properties of quantum cascade structures,” Phys. Rev. B66, 245314 (2002). [CrossRef]
  31. T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, “Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers,” Phys. Rev. B79, 195323 (2009). [CrossRef]
  32. T. Schmielau and M. Pereira, “Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers,” Appl. Phys. Lett.95, 231111 (2009). [CrossRef]
  33. G. Haldaś, A. Kolek, and I. Tralle, “Modeling of mid-infrared quantum cascade laser by means of nonequilibrium green’s functions,” IEEE J. Quantum Electron.47, 878–885 (2011). [CrossRef]
  34. T. Brandes, “Truncation method for green’s functions in time-dependent fields,” Phys. Rev. B56, 1213 (1997). [CrossRef]
  35. H. Haug and S. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2009). [CrossRef]
  36. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4μm wavelength,” Appl. Phys. Lett.66, 3242–3244 (1995). [CrossRef]
  37. D. O. Winge, M. Lindskog, and A. Wacker, “Nonlinear response of quantum cascade structures,” Appl. Phys. Lett.101, 211113 (2012). [CrossRef]
  38. O. Malis, A. Belyanin, C. Gmachl, D. L. Sivco, M. L. Peabody, A. M. Sergent, and A. Y. Cho, “Improvement of second-harmonic generation in quantum-cascade lasers with true phase matching,” Appl. Phys. Lett.84, 2721–2723 (2004). [CrossRef]
  39. M. Belkin, Q. J. Wang, C. Pflugl, A. Belyanin, S. Khanna, A. Davies, E. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Topics Quantum Electron.15, 952 (2009). [CrossRef]
  40. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  41. R. Boyd, Nonlinear Optics (Academic, 1992).
  42. F. Banit, S.-C. Lee, A. Knorr, and A. Wacker, “Self-consistent theory of the gain linewidth for quantum cascade lasers,” Appl. Phys. Lett.86, 041108 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited