OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18412–18420

Molecular-absorption-induced thermal bistability in PECVD silicon nitride microring resonators

Tingyi Gu, Mingbin Yu, Dim-Lee Kwong, and Chee Wei Wong  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18412-18420 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1210 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The wavelength selective linear absorption in communication C-band is investigated in CMOS-processed PECVD silicon nitride rings. In the overcoupled region, the linear absorption loss lowers the on-resonance transmission of a ring resonator and increases its overall quality factor. Both the linear absorption and ring quality factor are maximized near 1520 nm. The direct heating by phonon absorption leads to thermal optical bistable switching in PECVD silicon nitride based microring resonators. We calibrate the linear absorption rate in the microring resonator by measuring its transmission lineshape at different laser power levels, consistent with coupled mode theory calculations.

© 2014 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(190.1450) Nonlinear optics : Bistability
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

Original Manuscript: June 2, 2014
Revised Manuscript: July 7, 2014
Manuscript Accepted: July 11, 2014
Published: July 22, 2014

Tingyi Gu, Mingbin Yu, Dim-Lee Kwong, and Chee Wei Wong, "Molecular-absorption-induced thermal bistability in PECVD silicon nitride microring resonators," Opt. Express 22, 18412-18420 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007). [CrossRef]
  2. C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009). [CrossRef]
  3. J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio-frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014). [CrossRef]
  4. T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photon. 6(8), 554–559 (2012). [CrossRef]
  5. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photon. 7(8), 597–607 (2013). [CrossRef]
  6. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008). [CrossRef] [PubMed]
  7. J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 22(4), 3797–3810 (2014). [CrossRef] [PubMed]
  8. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009). [CrossRef] [PubMed]
  9. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004). [CrossRef] [PubMed]
  10. H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85(15), 3029–3031 (2004). [CrossRef]
  11. C.H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, and L. E. Katz, “Low loss Si3N4-SiO2 optical waveguides on Si,” Appl. Opt. 26(13), 2621–2624 (1987).
  12. J. Vucković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002). [PubMed]
  13. Z.-G. Zang and Y.-J. Zhang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59(2), 161–165 (2012). [CrossRef]
  14. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistgable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005). [CrossRef]
  15. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004). [CrossRef] [PubMed]
  16. M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express 18(25), 26695–26703 (2010). [CrossRef] [PubMed]
  17. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4(1), 37–40 (2010). [CrossRef]
  18. S.-W. Huang, J. F. McMillan, J. Yang, A. Matsko, H. Zhou, M. Yu, D.-L. Kwong, L. Maleki, C. W. Wong, “Direct generation of 74-fs mode-locking from on-chip normal dispersion frequency combs,” submitted under review (2014).
  19. K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37(8), 1331–1333 (2012). [CrossRef] [PubMed]
  20. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010). [CrossRef] [PubMed]
  21. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photon. 4(1), 41–45 (2010). [CrossRef]
  22. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002). [CrossRef] [PubMed]
  23. N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010). [CrossRef] [PubMed]
  24. Y. Zha, P. T. Lin, L. Kimerling, A. Agarwal, and C. B. Arnold, “Inverted-Rib Chalcogenide Waveguides by Solution Process,” ACS Photon. 1(3), 153–157 (2014). [CrossRef]
  25. K. Vu, K. Yan, Z. Jin, X. Gai, D.-Y. Choi, S. Debbarma, B. Luther-Davies, and S. Madden, “Hybrid waveguide from As2S3 and Er-doped TeO2 for lossless nonlinear optics,” Opt. Lett. 38(11), 1766–1768 (2013). [CrossRef] [PubMed]
  26. S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express 16(25), 20809–20816 (2008). [CrossRef] [PubMed]
  27. S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys. 77(12), 6534 (1995). [CrossRef]
  28. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008). [CrossRef] [PubMed]
  29. D. V. Tsu, G. Lucovsky, and B. N. Davidson, “Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0<r<2) alloy system,” Phys. Rev. B Condens. Matter 40(3), 1795–1805 (1989). [CrossRef] [PubMed]
  30. J. Fandiño, A. Ortiz, L. Rodríguez-Fernandez, and J. C. Alonso, “Composition, structural, and electrical properties of fluorinated silicon-nitride thin films grown by remote plasma-enhanced chemical-vapor deposition from SiF4/NH3 mixtures,” J. Vac. Sci. Technol. 22(3), 570–577 (2004). [CrossRef]
  31. D. V. Tsu and G. Lucovsky, “Silicon nitride and silicon diimide grown by remote plasma enhanced chemical vapor deposition,” J. Vac. Sci. Tech. A: Vacuum, Surfaces, and Films 4(3), 480–485 (1986). [CrossRef]
  32. N. Wada, S. A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4,” J. Non-Cryst. Solids 43(1), 7–15 (1981). [CrossRef]
  33. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002). [CrossRef]
  34. Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012). [CrossRef] [PubMed]
  35. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004). [CrossRef] [PubMed]
  36. A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003). [CrossRef]
  37. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  38. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009). [CrossRef] [PubMed]
  39. C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20(27), 29076–29089 (2012). [CrossRef] [PubMed]
  40. A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013). [CrossRef] [PubMed]
  41. P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal micro-resonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005). [CrossRef]
  42. A. Arbabi and L. L. Goddard, “Dynamics of self-heating in microring resonators,” IEEE Photon. J. 4(5), 1702–1711 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited