OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18433–18438

Monopole resonators in planar plasmonic metamaterials

Joong Wook Lee, Jin-Kyu Yang, Ik-Bu Sohn, Hyung Keun Yoo, Chul Kang, and Chul-Sik Kee  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18433-18438 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1492 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We first present a new phenomenon: the quarter-wavelength resonance of an electromagnetic field in planar plasmonic metamaterials consisting of asymmetrically coupled air-slot arrays, which is essential for a monopole resonator. The anti-nodal electric field intensity of the quarter-wavelength fundamental mode is formed by strong charge concentrations at the sharp metallic edges of the crossing position of the air-slots, and the nodal point of the electric field intensity naturally occurs at the other end of the air-slot. By tuning the structural asymmetry, the quarter-wavelength resonances were successfully split from the half-wavelength resonance, experimentally and numerically.

© 2014 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(240.6690) Optics at surfaces : Surface waves
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: March 6, 2014
Revised Manuscript: June 11, 2014
Manuscript Accepted: July 12, 2014
Published: July 23, 2014

Joong Wook Lee, Jin-Kyu Yang, Ik-Bu Sohn, Hyung Keun Yoo, Chul Kang, and Chul-Sik Kee, "Monopole resonators in planar plasmonic metamaterials," Opt. Express 22, 18433-18438 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  2. T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arryas,” Nature391(6668), 667–669 (1998). [CrossRef]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  4. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett.70(11), 1354–1356 (1997). [CrossRef]
  5. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science332(6036), 1407–1410 (2011). [CrossRef] [PubMed]
  6. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011). [CrossRef]
  7. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004). [CrossRef] [PubMed]
  8. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express13(6), 1933–1938 (2005). [CrossRef] [PubMed]
  9. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8(2), 631–636 (2008). [CrossRef] [PubMed]
  10. J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q. H. Park, and P. C. M. Planken, “Shape resonance omni-directional terahertz filters with near-unity transmittance,” Opt. Express14(3), 1253–1259 (2006). [CrossRef] [PubMed]
  11. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007). [CrossRef] [PubMed]
  12. B. Yu, S. Goodman, A. Abdelaziz, and D. M. O’Carroll, “Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas,” Appl. Phys. Lett.101(15), 151106 (2012). [CrossRef]
  13. V. Schmidt, W. Husinsky, and G. Betz, “Dynamics of laser desorption and ablation of metals at the threshold on the femtosecond time scale,” Phys. Rev. Lett.85(16), 3516–3519 (2000). [CrossRef] [PubMed]
  14. M. van Exter and D. Grischkowsky, “Optical and electric properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett.56(17), 1694–1696 (1990). [CrossRef]
  15. Z. Jiang, M. Li, and X. C. Zhang, “Dielectric constant measurement of thin films by differential time domain spectroscopy,” Appl. Phys. Lett.76(22), 3221–3223 (2000). [CrossRef]
  16. D. Y. Smith, E. Shiles, and M. Inokuti, Handbook of Optical Constant of Solids (Academic, 1985).
  17. H. S. Choi, D. F. P. Pile, S. H. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17(9), 7519–7524 (2009). [CrossRef] [PubMed]
  18. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited