OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18440–18453

Multilayer Fresnel zone plates for high energy radiation resolve 21 nm features at 1.2 keV

Kahraman Keskinbora, Anna-Lena Robisch, Marcel Mayer, Umut T. Sanli, Corinne Grévent, Christian Wolter, Markus Weigand, Adriana Szeghalmi, Mato Knez, Tim Salditt, and Gisela Schütz  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18440-18453 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1838 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



X-ray microscopy is a successful technique with applications in several key fields. Fresnel zone plates (FZPs) have been the optical elements driving its success, especially in the soft X-ray range. However, focusing of hard X-rays via FZPs remains a challenge. It is demonstrated here, that two multilayer type FZPs, delivered from the same multilayer deposit, focus both hard and soft X-rays with high fidelity. The results prove that these lenses can achieve at least 21 nm half-pitch resolution at 1.2 keV demonstrated by direct imaging, and sub-30 nm FWHM (full-pitch) resolution at 7.9 keV, deduced from autocorrelation analysis. Reported FZPs had more than 10% diffraction efficiency near 1.5 keV.

© 2014 Optical Society of America

OCIS Codes
(340.0340) X-ray optics : X-ray optics
(340.6720) X-ray optics : Synchrotron radiation
(340.7460) X-ray optics : X-ray microscopy
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)
(050.1965) Diffraction and gratings : Diffractive lenses
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
X-ray Optics

Original Manuscript: March 17, 2014
Revised Manuscript: June 18, 2014
Manuscript Accepted: June 19, 2014
Published: July 23, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Kahraman Keskinbora, Anna-Lena Robisch, Marcel Mayer, Umut T. Sanli, Corinne Grévent, Christian Wolter, Markus Weigand, Adriana Szeghalmi, Mato Knez, Tim Salditt, and Gisela Schütz, "Multilayer Fresnel zone plates for high energy radiation resolve 21 nm features at 1.2 keV," Opt. Express 22, 18440-18453 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Vila-Comamala, Y. Pan, J. J. Lombardo, W. M. Harris, W. K. S. Chiu, C. David, and Y. Wang, “Zone-doubled Fresnel zone plates for high-resolution hard X-ray full-field transmission microscopy,” J. Synchrotron Radiat. 19(5), 705–709 (2012). [CrossRef] [PubMed]
  2. E. Zschech, C. Wyon, C. E. Murray, and G. Schneider, “Devices, materials, and processes for nanoelectronics: characterization with advanced x‐ray techniques using lab‐based and synchrotron radiation sources,” Adv. Eng. Mater. 13(8), 811–836 (2011). [CrossRef]
  3. A. Bisig, M. Stärk, M.-A. Mawass, C. Moutafis, J. Rhensius, J. Heidler, F. Büttner, M. Noske, M. Weigand, S. Eisebitt, T. Tyliszczak, B. Van Waeyenberge, H. Stoll, G. Schütz, and M. Kläui, “Correlation between spin structure oscillations and domain wall velocities,” Nat. Commun. 4, 2328 (2013).
  4. M. Kammerer, H. Stoll, M. Noske, M. Sproll, M. Weigand, C. Illg, G. Woltersdorf, M. Fähnle, C. Back, and G. Schütz, “Fast spin-wave-mediated magnetic vortex core reversal,” Phys. Rev. B 86(13), 134426 (2012). [CrossRef]
  5. J. Kirz and C. Jacobsen, “The history and future of X-ray microscopy,” J. Phys. Conf. Ser. 186, 012001 (2009). [CrossRef]
  6. P. Kirkpatrick and A. V. Baez, “Formation of optical images by X-Rays,” J. Opt. Soc. Am. 38(9), 766–774 (1948). [CrossRef] [PubMed]
  7. S. Matsuyama, T. Wakioka, N. Kidani, T. Kimura, H. Mimura, Y. Sano, Y. Nishino, M. Yabashi, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “One-dimensional Wolter optics with a sub-50 nm spatial resolution,” Opt. Lett. 35(21), 3583–3585 (2010). [CrossRef] [PubMed]
  8. K. Yamauchi, H. Mimura, T. Kimura, H. Yumoto, S. Handa, S. Matsuyama, K. Arima, Y. Sano, K. Yamamura, K. Inagaki, H. Nakamori, J. Kim, K. Tamasaku, Y. Nishino, M. Yabashi, and T. Ishikawa, “Single-nanometer focusing of hard x-rays by Kirkpatrick-Baez mirrors,” J. Phys. Condens. Matter 23(39), 394206 (2011). [CrossRef] [PubMed]
  9. S. Matsuyama, N. Kidani, H. Mimura, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Hard-X-ray imaging optics based on four aspherical mirrors with 50 nm resolution,” Opt. Express 20(9), 10310–10319 (2012). [CrossRef] [PubMed]
  10. D. T. Attwood, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University Press, 2000).
  11. J. Kirz, “Phase zone plates for x rays and the extreme uv,” J. Opt. Soc. Am. 64(3), 301–309 (1974). [CrossRef]
  12. J. Maser and G. Schmahl, “Coupled wave description of the diffraction by zone plates with high aspect ratios,” Opt. Commun. 89(2-4), 355–362 (1992). [CrossRef]
  13. G. Schneider, S. Rehbein, and S. Werner, “Volume Effects in Zone Plates,” in Modern Developments in X-Ray and Neutron Optics, A. Erko, M. Idir, T. Krist, and A. Michette, eds. (Springer Berlin / Heidelberg, 2008), pp. 137–171.
  14. S. Werner, S. Rehbein, P. Guttmann, and G. Schneider, “3-D structured on-chip stacked zone plates for nanoscale X-ray imaging with high efficiency,” Nano Res. 7, 1–8 (2014). [CrossRef]
  15. K. Keskinbora, A.-L. Robisch, M. Mayer, C. Grévent, A. V. Szeghalmi, M. Knez, M. Weigand, I. Snigireva, A. Snigirev, T. Salditt, and G. Schütz, “Recent advances in use of atomic layer deposition and focused ion beams for fabrication of Fresnel zone plates for hard x-rays,” Proc. SPIE 8851, 885119 (2013). [CrossRef]
  16. Y.-T. Chen, T.-N. Lo, Y. S. Chu, J. Yi, C.-J. Liu, J.-Y. Wang, C.-L. Wang, C.-W. Chiu, T.-E. Hua, Y. Hwu, Q. Shen, G.-C. Yin, K. S. Liang, H.-M. Lin, J. H. Je, and G. Margaritondo, “Full-field hard x-ray microscopy below 30 nm: a challenging nanofabrication achievement,” Nanotechnology 19(39), 395302 (2008). [CrossRef] [PubMed]
  17. H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19(16), 15069–15076 (2011). [CrossRef] [PubMed]
  18. H. R. Wu, S. T. Chen, Y. S. Chu, R. Conley, N. Bouet, C. C. Chien, H. H. Chen, C. H. Lin, H. T. Tung, H. H. Chen, G. Margaritondo, J. H. Je, and Y. Hwu, “Nanoresolution radiology of neurons,” J. Phys. D Appl. Phys. 45(24), 242001 (2012). [CrossRef]
  19. M. Osterhoff, M. Bartels, F. Döring, C. Eberl, T. Hoinkes, S. Hoffmann, T. Liese, V. Radisch, A. Rauschenbeutel, A.-L. Robisch, A. Ruhlandt, F. Schlenkrich, T. Salditt, and H.-U. Krebs, “Two-dimensional sub-5-nm hard x-ray focusing with MZP,” Proc. SPIE 8848, 884802 (2013). [CrossRef]
  20. T. Koyama, H. Takenaka, S. Ichimaru, T. Ohchi, T. Tsuji, H. Takano, and Y. Kagoshima, “Development of Multilayer Laue Lenses; (1) Linear Type,” AIP Conf. Proc. 1365, 24–27 (2011).
  21. T. Koyama, H. Takano, S. Konishi, T. Tsuji, H. Takenaka, S. Ichimaru, T. Ohchi, and Y. Kagoshima, “Circular multilayer zone plate for high-energy x-ray nano-imaging,” Rev. Sci. Instrum. 83, 013705 (2012).
  22. H. Takano, S. Konishi, T. Koyama, Y. Tsusaka, S. Ichimaru, T. Ohchi, H. Takenaka, and Y. Kagoshima, “Point spread function measurement of an X-ray beam focused by a multilayer zone plate with narrow annular aperture,” J. Synchrotron Radiat. 21(2), 446–448 (2014). [CrossRef] [PubMed]
  23. X. Huang, H. Yan, E. Nazaretski, R. Conley, N. Bouet, J. Zhou, K. Lauer, L. Li, D. Eom, D. Legnini, R. Harder, I. K. Robinson, and Y. S. Chu, “11 nm hard X-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep.  3, 3562 (2013).
  24. M. Mayer, C. Grévent, A. Szeghalmi, M. Knez, M. Weigand, S. Rehbein, G. Schneider, B. Baretzky, and G. Schütz, “Multilayer Fresnel zone plate for soft X-ray microscopy resolves sub-39nm structures,” Ultramicroscopy 111(12), 1706–1711 (2011). [CrossRef] [PubMed]
  25. T. Liese, V. Radisch, I. Knorr, M. Reese, P. Großmann, K. Mann, and H.-U. Krebs, “Development of laser deposited multilayer zone plate structures for soft X-ray radiation,” Appl. Surf. Sci. 257(12), 5138–5141 (2011). [CrossRef]
  26. S. Tamura, “Multilayer Fresnel zone plate with high-diffraction efficiency: application of composite layer to x-ray optics,” in Metal, Ceramic and Polymeric Composites for Various Uses, J. Cuppoletti, ed. (InTech, 2011), pp. 637–654.
  27. F. Döring, A. L. Robisch, C. Eberl, M. Osterhoff, A. Ruhlandt, T. Liese, F. Schlenkrich, S. Hoffmann, M. Bartels, T. Salditt, and H. U. Krebs, “Sub-5 nm hard x-ray point focusing by a combined Kirkpatrick-Baez mirror and multilayer zone plate,” Opt. Express 21(16), 19311–19323 (2013). [CrossRef] [PubMed]
  28. R. M. Bionta and K. M. Skulina, “Hard x-ray sputtered-sliced phase zone plates,” MRS Online Proc. Lib. 307, 343 (1993). [CrossRef]
  29. D. Rudolph, B. Niemann, and G. Schmahl, “Status of the sputtered sliced zone plates for x-ray microscopy,” Proc. Soc. Photo Opt. Instrum. Eng. 316, 103–105 (1981).
  30. D. Rudolph and G. Schmahl, “High power zone plates for a soft x-ray microscope,” Ann. N. Y. Acad. Sci. 342(1 Ultrasoft X-R), 94–104 (1980). [CrossRef]
  31. N. Kamijo, S. Tamura, Y. Suzuki, K. Handa, A. Takeuchi, S. Yamamoto, M. Ando, K. Ohsumi, and H. Kihara, “Fabrication of a hard x-ray sputtered-sliced Fresnel phase zone plate,” Rev. Sci. Instrum. 68(1), 14–16 (1997). [CrossRef]
  32. T. Koyama, T. Tsuji, H. Takano, Y. Kagoshima, S. Ichimaru, T. Ohchi, and H. Takenaka, “Development of Multilayer Laue Lenses; (2) Circular Type,” AIP Conf. Proc. 1365, 100–103 (2011).
  33. Z. Cai, Y. Xiao, I. Dragomir-Cernatescu, R. Snyder, Z. Wang, and B. Lai, “Direct Observation of Strain Segregation in ZnO Nanorings Using X-ray Diffraction,” (Argonne National Laboratory (ANL), 2006).
  34. R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty, and J. Maser, “A hard X-ray nanoprobe beamline for nanoscale microscopy,” J. Synchrotron Radiat. 19(6), 1056–1060 (2012). [CrossRef] [PubMed]
  35. G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to x-ray microbeam and nanobeam science,” Science 334(6060), 1234–1239 (2011). [CrossRef] [PubMed]
  36. A. Ruhlandt, T. Liese, V. Radisch, S. P. Kruger, M. Osterhoff, K. Giewekemeyer, H. U. Krebs, and T. Salditt, “A combined Kirkpatrick-Baez mirror and multilayer lens for sub-10 nm x-ray focusing,” AIP Adv. 2(1), 012175 (2012). [CrossRef]
  37. J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).
  38. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3(1), 27–29 (1978). [CrossRef] [PubMed]
  39. R. Follath, J. S. Schmidt, M. Weigand, K. Fauth, R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, “The X-ray microscopy beamline UE46-PGM2 at BESSY,” AIP Conf. Proc. 1234, 323–326 (2010). [CrossRef]
  40. M. Mayer, K. Keskinbora, C. Grévent, A. Szeghalmi, M. Knez, M. Weigand, A. Snigirev, I. Snigireva, and G. Schütz, “Efficient focusing of 8 keV x-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling,” J. Synchrotron Radiat. 20(3), 433–440 (2013). [CrossRef] [PubMed]
  41. J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009). [CrossRef] [PubMed]
  42. W. B. Yun, P. J. Viccaro, B. Lai, and J. Chrzas, “Coherent hard x-ray focusing optics and applications,” Rev. Sci. Instrum. 63(1), 582 (1992). [CrossRef]
  43. S. Werner, S. Rehbein, P. Guttmann, S. Heim, and G. Schneider, “Towards high diffraction efficiency zone plates for X-ray microscopy,” Microelectron. Eng. 87(5-8), 1557–1560 (2010). [CrossRef]
  44. H. Rarback and J. Kirz, “Optical Performance of Apodized Zone Plates,” Proc. SPIE 0316, 120–127 (1982). [CrossRef]
  45. M. J. Simpson and A. G. Michette, “Imaging properties of modified Fresnel zone plates,” Optica Acta: International Journal of Optics 31(4), 403–413 (1984). [CrossRef]
  46. A. A. Michelson, Studies in Optics (Dover Publications, Incorporated, 1995).
  47. G. R. Morrison, “Phase contrast and darkfield imaging in x-ray microscopy,” Proc. SPIE 1741, 186–193 (1993). [CrossRef]
  48. K. Keskinbora, C. Grévent, U. Eigenthaler, M. Weigand, and G. Schütz, “Rapid prototyping of Fresnel zone plates via direct Ga+ ion beam lithography for high-resolution x-ray imaging,” ACS Nano 7(11), 9788–9797 (2013). [CrossRef] [PubMed]
  49. R. Lizárraga, E. Holmström, S. C. Parker, and C. Arrouvel, “Structural characterization of amorphous alumina and its polymorphs from first-principles XPS and NMR calculations,” Phys. Rev. B 83(9), 094201 (2011). [CrossRef]
  50. S. P. Adiga, P. Zapol, and L. A. Curtiss, “Atomistic simulations of amorphous alumina surfaces,” Phys. Rev. B 74(6), 064204 (2006). [CrossRef]
  51. T. Campbell, R. K. Kalia, A. Nakano, P. Vashishta, S. Ogata, and S. Rodgers, “Dynamics of oxidation of aluminum nanoclusters using variable charge molecular-dynamics simulations on parallel computers,” Phys. Rev. Lett. 82(24), 4866–4869 (1999). [CrossRef]
  52. H. L. Wang, C. H. Lin, and M. H. Hon, “The dependence of hardness on the density of amorphous alumina thin films by PECVD,” Thin Solid Films 310(1-2), 260–264 (1997). [CrossRef]
  53. J. R. Wank, S. M. George, and A. W. Weimer, “Nanocoating individual cohesive boron nitride particles in a fluidized bed by ALD,” Powder Technol. 142(1), 59–69 (2004). [CrossRef]
  54. L. F. Hakim, J. Blackson, S. M. George, and A. W. Weimer, “Nanocoating individual silica nanoparticles by atomic layer deposition in a fluidized bed reactor,” Chem. Vap. Deposition 11(10), 420–425 (2005). [CrossRef]
  55. K. Kukli, M. Ritala, and M. Leskelä, “Atomic layer epitaxy growth of tantalum oxide thin films from Ta(OC2H5)5 and H2O,” J. Electrochem. Soc. 142(5), 1670–1675 (1995). [CrossRef]
  56. C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. Rep. 22(6), 269–322 (1998). [CrossRef]
  57. S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salomé, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Radiat. 18(3), 442–446 (2011). [CrossRef] [PubMed]
  58. E. Nazaretski, H. Yan, J. Kim, K. Lauer, K. Gofron, D. Shu, and Y. Chu, “Development of a 10 nm spatial resolution Hard X-ray Microscope for the Nanoprobe beamline at NSLS-II,” Bull. Am. Phys. Soc. 58, J46003 (2013).
  59. Z. Cai, B. Lai, W. Yun, P. Ilinski, D. Legnini, J. Maser, and W. Rodrigues, “A hard x-ray scanning microprobe for fluorescence imaging and microdiffraction at the advanced photon source,” AIP Conf. Proc. 507, 472–477 (2000). [CrossRef]
  60. Y. Xiao, Z. Cai, Z. L. Wang, B. Lai, and Y. S. Chu, “An X-ray nanodiffraction technique for structural characterization of individual nanomaterials,” J. Synchrotron Radiat. 12(2), 124–128 (2005). [CrossRef] [PubMed]
  61. W. Chao, P. Fischer, T. Tyliszczak, S. Rekawa, E. Anderson, and P. Naulleau, “Real space soft x-ray imaging at 10 nm spatial resolution,” Opt. Express 20(9), 9777–9783 (2012). [CrossRef] [PubMed]
  62. S. Rehbein, P. Guttmann, S. Werner, and G. Schneider, “Characterization of the resolving power and contrast transfer function of a transmission X-ray microscope with partially coherent illumination,” Opt. Express 20(6), 5830–5839 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited