OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18464–18472

Slow surface plasmon pulse excitation in metal-insulator-metal plasmonic waveguide with chirped grating

Joonsoo Kim, Seung-Yeol Lee, Hyeonsoo Park, Hwi Kim, and Byoungho Lee  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18464-18472 (2014)
http://dx.doi.org/10.1364/OE.22.018464


View Full Text Article

Enhanced HTML    Acrobat PDF (921 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A scheme for the excitation of slow surface plasmon pulses using photonic interband transition in a metal-insulator-metal (MIM) waveguide is proposed. An investigation the mode transition behavior inside the binary grating confirmed that the proposed concept can be understood in terms of the coupling of symmetric and anti-symmetric plasmonic modes. We observed that, although a binary grating that is optimized for a single frequency can excite slow surface plasmon pulses, it is inadequate for broadband mode conversion. To rectify this, a chirped grating was designed for the demonstration of broadband mode conversion by applying a cascade mode transition with different frequencies.

© 2014 Optical Society of America

OCIS Codes
(200.4490) Optics in computing : Optical buffers
(230.7390) Optical devices : Waveguides, planar
(320.5550) Ultrafast optics : Pulses
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: April 28, 2014
Revised Manuscript: July 16, 2014
Manuscript Accepted: July 16, 2014
Published: July 23, 2014

Citation
Joonsoo Kim, Seung-Yeol Lee, Hyeonsoo Park, Hwi Kim, and Byoungho Lee, "Slow surface plasmon pulse excitation in metal-insulator-metal plasmonic waveguide with chirped grating," Opt. Express 22, 18464-18472 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18464


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. H. Choo, M.-K. Kim, M. Staffaroni, T. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovich, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics6(12), 838–844 (2012). [CrossRef]
  3. K.-Y. Kim, J. Kim, I.-M. Lee, and B. Lee, “Analysis of transverse power flow via surface modes in metamaterial waveguides,” Phys. Rev. A85(2), 023840 (2012). [CrossRef]
  4. J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express18(2), 598–623 (2010). [CrossRef] [PubMed]
  5. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007). [CrossRef] [PubMed]
  6. M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett.107(20), 207401 (2011). [CrossRef] [PubMed]
  7. H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep.3, 1249 (2013). [CrossRef] [PubMed]
  8. Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A.108(13), 5169–5173 (2011). [CrossRef] [PubMed]
  9. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999). [CrossRef]
  10. G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett.111(3), 033601 (2013). [CrossRef] [PubMed]
  11. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008). [CrossRef]
  12. A. Yariv, “Couple-mode theory for guided-wave optics,” IEEE J. Quantum Electron.9(9), 919–933 (1973). [CrossRef]
  13. H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE79(10), 1505–1518 (1991). [CrossRef]
  14. D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett.108(21), 213901 (2012). [CrossRef] [PubMed]
  15. M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, and M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett.112(5), 053904 (2014). [CrossRef] [PubMed]
  16. C. R. Otey, M. L. Povinelli, and S. Fan, “Completely capturing light pulses in a few dynamically tuned microcavities,” J. Lightwave Technol.26(23), 3784–3793 (2008). [CrossRef]
  17. C. R. Otey, M. L. Povinelli, and S. Fan, “Capturing light pulses into a pair of coupled photonic crystal cavities,” Appl. Phys. Lett.94(23), 231109 (2009). [CrossRef]
  18. H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (CRC Press, 2012).
  19. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: the effect of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C113(8), 3041–3045 (2009). [CrossRef]
  20. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009). [CrossRef]
  21. H. Kim and B. Lee, “Efficient frequency conversion in slab waveguide by cascaded nonreciprocal interband photonic transitions,” Opt. Lett.35(19), 3165–3167 (2010). [CrossRef] [PubMed]
  22. H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett.109(3), 033901 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (2938 KB)     
» Media 2: AVI (2962 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited