OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18519–18526

Tunable distributed Bragg reflectors with wide-angle and broadband high-reflectivity using nanoporous/dense titanium dioxide film stacks for visible wavelength applications

Jung Woo Leem, Xiang-Yu Guan, and Jae Su Yu  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18519-18526 (2014)
http://dx.doi.org/10.1364/OE.22.018519


View Full Text Article

Enhanced HTML    Acrobat PDF (4219 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Highly-tolerant distributed Bragg reflectors (DBRs) based on the same materials consisting of nanoporous/dense titanium dioxide (TiO2) film pair structures with wide-angle and broadband highly-reflective properties at visible wavelengths are reported. For a high refractive index contrast, the two dense and nanoporous TiO2 film stacks are alternatingly deposited on silicon (Si) substrates by a oblique angle deposition (OAD) method at two vapor flux angles (θα) of 0 and 80° for high and low refractive indices, respectively. For the TiO2 DBRs at a center wavelength (λc) of 540 nm, the maximum level in reflectance (R) band is increased with increasing the number of pairs, exhibiting high R values of > 90% for 5 pairs, and the normalized stop bandwidth (∆λ/λc) of ~17.8% is obtained. At λc = 540 nm, the patterned TiO2 DBR with 5 pairs shows an uniform relative reflectivity over a whole surface of 3 inch-sized Si wafer and a large-scalable fabrication capability with any features. The angle-dependent reflectance characteristics of TiO2 DBR at λc = 540 nm are also studied at incident angles (θinc) of 20-70° for p-, s-, and non-polarized lights in the wavelength region of 350-750 nm, yielding high R values of > 70.4% at θinc values of 20-70° for non-polarized light. By adjusting the λc/4 thicknesses of nanoporous and dense films, for λc = 450, 540, and 680 nm, tunable broadband TiO2 DBRs with high R values of > 90% at wavelengths of 400-800 nm are realized.

© 2014 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(310.1860) Thin films : Deposition and fabrication
(310.4165) Thin films : Multilayer design

ToC Category:
Optical Devices

History
Original Manuscript: May 28, 2014
Revised Manuscript: July 7, 2014
Manuscript Accepted: July 11, 2014
Published: July 23, 2014

Citation
Jung Woo Leem, Xiang-Yu Guan, and Jae Su Yu, "Tunable distributed Bragg reflectors with wide-angle and broadband high-reflectivity using nanoporous/dense titanium dioxide film stacks for visible wavelength applications," Opt. Express 22, 18519-18526 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18519


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron.33(10), 1810–1824 (1997). [CrossRef]
  2. M. Y. Kuo, J. Y. Hsing, T. T. Chiu, C. N. Li, W. T. Kuo, T. S. Lay, and M. H. Shih, “Quantum efficiency enhancement in selectively transparent silicon thin film solar cells by distributed Bragg reflectors,” Opt. Express20(S6), A828–A835 (2012). [CrossRef]
  3. O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett.66(3), 329–331 (1995). [CrossRef]
  4. P. Kurt, D. Banerjee, R. E. Cohen, and M. F. Rubner, “Structural color via layer-by-layer deposition: layered nanoparticle arrays with near-UV and visible reflectivity bands,” J. Mater. Chem.19(47), 8920–8927 (2009). [CrossRef]
  5. S. J. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, and Y. T. Lee, “Highly tolerant a-Si distributed Bragg reflector fabricated by oblique angle deposition,” Opt. Mater. Express1(3), 451–457 (2011). [CrossRef]
  6. M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett.90(14), 141115 (2007). [CrossRef]
  7. J. W. Leem and J. S. Yu, “Broadband and wide-angle distributed Bragg reflectors based on amorphous germanium films by glancing angle deposition,” Opt. Express20(18), 20576–20581 (2012). [CrossRef] [PubMed]
  8. C. Charles, N. Martin, M. Devel, J. Ollitrault, and A. Billard, “Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition,” Thin Solid Films534, 275–281 (2013). [CrossRef]
  9. J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express19(S3), A258–A268 (2011). [CrossRef] [PubMed]
  10. B. S. Richards, “Comparison of TiO2 and other dielectric coatings for buried-contact solar cells: a review,” Prog. Photovolt. Res. Appl.12(4), 253–281 (2004). [CrossRef]
  11. SOPRA, http://www.sopra-sa.com , Accessed 1 November (2013).
  12. Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res.23(9), 2500–2505 (2008). [CrossRef]
  13. K. M. Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, “SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,” Appl. Phys. Lett.75(24), 3805–3807 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited