OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18527–18536

Periodical energy oscillation and pulse splitting in sinusoidal volume holographic grating

Xiaona Yan, Lirun Gao, Ye Dai, Xihua Yang, Yuanyuan Chen, and Guohong Ma  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18527-18536 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1446 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents dynamical diffraction properties of a femtosecond pulse in a sinusoidal volume holographic grating (VHG). By the modified coupled-wave equations of Kogelnik, we show that the diffraction of a femtosecond pulse on the VHG gives rise to periodical energy oscillation and pulse splitting. In the initial stage of diffraction, one diffracted pulse and one transmitted pulse emerge, and energy of the transmitted pulse periodically transfers to the diffracted pulse and vice versa. In the latter stage, both the diffracted and transmitted pulses split into two spatially separated pulses. One pair of transmitted and diffracted pulses propagates in the same direction and forms the output diffracted dual pulses of the VHG, and the other pair of pulses forms the output transmitted dual pulses. The pulse interval between each pair of dual pulses is in linearly proportional to the refractive index modulation and grating thickness. By the interference effect and group velocity difference we give explanations on the periodical energy oscillation and pulse splitting respectively.

© 2014 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.7330) Diffraction and gratings : Volume gratings
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:

Original Manuscript: June 3, 2014
Revised Manuscript: July 8, 2014
Manuscript Accepted: July 16, 2014
Published: July 23, 2014

Xiaona Yan, Lirun Gao, Ye Dai, Xihua Yang, Yuanyuan Chen, and Guohong Ma, "Periodical energy oscillation and pulse splitting in sinusoidal volume holographic grating," Opt. Express 22, 18527-18536 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Zhao, X. Tong, and C. Lin, “Alignment-dependent ionization probability of molecules in a double-pulse laser field,” Phys. Rev. A 67(4), 043404 (2003). [CrossRef]
  2. C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003). [CrossRef] [PubMed]
  3. S. Iwai, Y. Ishige, S. Tanaka, Y. Okimoto, Y. Tokura, and H. Okamoto, “Coherent control of charge and lattice dynamics in a photoinduced neutral-to-ionic transition of a charge-transfer compound,” Phys. Rev. Lett. 96(5), 057403 (2006). [CrossRef] [PubMed]
  4. T. Nagata, M. Kamata, and M. Obara, “Optical waveguide fabrication with double pulse femtosecond lasers,” Appl. Phys. Lett. 86(25), 251103 (2005). [CrossRef]
  5. S. Noel, E. Axente, and J. Hermann, “Investigation of plumes produced by material ablation with two time-delayed femtosecond laser pulses,” Appl. Surf. Sci. 255(24), 9738–9741 (2009). [CrossRef]
  6. F. Bourquard, J. Colombier, M. Guillermin, A. Loir, C. Donnet, R. Stoian, and F. Garrelie, “Temporal pulse shaping effects on aluminium and boron ablation plumes generated by ultrashort pulsed laser ablation and analyzed by time- and space-resolved optical spectroscopy,” Appl. Surf. Sci. 258(23), 9374–9378 (2012). [CrossRef]
  7. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).
  8. S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, “Measuring spatial chirp in ultrashort pulses using single-shot Frequency-Resolved Optical Gating,” Opt. Express 11(1), 68–78 (2003). [CrossRef] [PubMed]
  9. J. L. Chilla and O. E. Martinez, “Direct determination of the amplitude and the phase of femtosecond light pulses,” Opt. Lett. 16(1), 39–41 (1991). [CrossRef] [PubMed]
  10. G. Li, C. Zhou, and E. Dai, “Splitting of femtosecond laser pulses by using a Dammann grating and compensation gratings,” J. Opt. Soc. Am. A 22(4), 767–772 (2005). [CrossRef] [PubMed]
  11. E. Dai, C. Zhou, and G. Li, “Dammann SHG-FROG for characterization of the ultrashort optical pulses,” Opt. Express 13(16), 6145–6152 (2005). [CrossRef] [PubMed]
  12. J. Zheng, C. Zhou, and E. Dai, “Double-line-density gratings structure for compression and generation of double femtosecond laser pulses,” J. Opt. Soc. Am. B 24(4), 979–984 (2007). [CrossRef]
  13. B. Bai, C. Zhou, E. Dai, and J. Zheng, “Generation of double pulses in-line by using reflective Dammann gratings,” Optik (Stuttg.) 119(2), 74–80 (2008). [CrossRef]
  14. W. Liu, B. Bai, C. Zhou, S. Qu, E. Dai, and G. Li, “Generating femtosecond double pulses using Damman reflection grating,” Acta Phys. Sin. 56, 3292–3298 (2007).
  15. T. Wu, C. Zhou, J. Zheng, J. Feng, H. Cao, L. Zhu, and W. Jia, “Generation of double femtosecond pulses by using two transmissive gratings,” Appl. Opt. 49(24), 4506–4513 (2010). [CrossRef] [PubMed]
  16. V. A. Bushuev, B. I. Mantsyzov, and A. A. Skorynin, “Diffraction-induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 79(5), 053811 (2009). [CrossRef]
  17. S. E. Svyakhovskiy, V. O. Kompanets, A. I. Maydykovskiv, T. V. Murzina, S. V. Chekalin, A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Observation of the temporal Bragg-diffraction induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 86(1), 013843 (2012). [CrossRef]
  18. A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Dynamical Bragg diffraction of optical pulses in photonic crystals in the Laue geometry: diffraction induced splitting, selective compression, and focusing of pulses,” J. Exp. Theor. Phys. 115(1), 56–67 (2012). [CrossRef]
  19. Z. Gao, X. Yan, Y. Dai, X. Yang, and G. Ma, “Generation of femtosecond double pulse by adjusting the refractive Index modulation of volume holographic grating,” Appl. Phys. B 112(1), 67–72 (2013). [CrossRef]
  20. X. Yan, Y. Dai, Z. Gao, Y. Chen, X. Yang, and G. Ma, “Femtosecond pulse shaping by modulating the refractive index modulation of volume holographic grating,” Opt. Express 21(6), 7560–7569 (2013). [CrossRef] [PubMed]
  21. Y. Ding, D. D. Nolte, Z. Zheng, A. Kanan, A. M. Weiner, and G. A. Brost, “Bandwidth study of volume holography in photorefractive InP:Fe for femtosecond pulse readout at 1.5 μm,” J. Opt. Soc. Am. B 15(11), 2763–2768 (1998). [CrossRef]
  22. X. Yan, B. Yang, and B. Yu, “Diffraction study of photorefractive hologram under ultrashort pulse readout,” Optik (Stuttg.) 115(11-12), 512–516 (2004). [CrossRef]
  23. B. Yang, X. Yan, Y. Yang, and H. Zhang, “Study on the instantaneous characteristics of diffracted and transmitted light of static photorefractive grating illuminated by ultra-short pulse laser,” Opt. Laser Technol. 40(7), 906–911 (2008). [CrossRef]
  24. C. Wang, L. Liu, A. Yan, D. Liu, D. Li, and W. Qu, “Pulse shaping properties of volume holographic gratings in anisotropic media,” J. Opt. Soc. Am. A 23(12), 3191–3196 (2006). [CrossRef] [PubMed]
  25. M. P. Hernández-Garay, O. Martínez-Matos, J. G. Izquierdo, M. L. Calvo, P. Vaveliuk, P. Cheben, and L. Bañares, “Femtosecond spectral pulse shaping with holographic gratings recorded in photopolymerizable glasses,” Opt. Express 19(2), 1516–1527 (2011). [CrossRef] [PubMed]
  26. L. A. Siiman, J. Lumeau, L. Canioni, and L. B. Glebov, “Ultrashort laser pulse diffraction by transmitting volume Bragg gratings in photo-thermo-refractive glass,” Opt. Lett. 34(17), 2572–2574 (2009). [CrossRef] [PubMed]
  27. A. Yan, L. Liu, Y. Zhi, D. Liu, and J. Sun, “Bragg diffraction of multilayer volume holographic gratings under ultrashort laser pulse readout,” J. Opt. Soc. Am. A 26(1), 135–141 (2009). [CrossRef] [PubMed]
  28. A. Yan, L. Liu, L. Wang, D. Liu, J. Sun, and L. Wan, “Pulse shaping and diffraction properties of multi-layers reflection volume holographic gratings,” Appl. Phys. B 96(1), 71–77 (2009). [CrossRef]
  29. X. Yan, M. Qian, L. Gao, X. Yang, Y. Dai, X. Yan, and G. Ma, “Pulse splitting by modulating the buffer layer thickness of two-layer volume holographic grating,” Opt. Express 21, 31852–31861 (2013). [CrossRef] [PubMed]
  30. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969). [CrossRef]
  31. C. Neipp, I. Pascual, and A. Beléndez, “Theoretical and experimental analysis of overmodulation effects in volume holograms recorded on BB-640 emulsions,” J. Opt. A, Pure Appl. Opt. 3(6), 504–513 (2001). [CrossRef]
  32. D. von der Linde and A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. (Berl.) 8(2), 85–100 (1975). [CrossRef]
  33. S. Gallego, M. Ortuño, C. Neipp, C. Garcia, A. Beléndez, and I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215(4-6), 263–269 (2003). [CrossRef]
  34. C. G. Shull, “Observation of Pendellösung fringe structure in neutron diffraction,” Phys. Rev. Lett. 21(23), 1585–1589 (1968). [CrossRef]
  35. S. Dürr, S. Kunze, and G. Rempe, “Pendellösung oscillations in second-order Bragg scattering of atoms from a standing light wave,” Quantum Semiclass. Opt. 8(3), 531–539 (1996). [CrossRef]
  36. C. Keller, J. Schmiedmayer, A. Zeilinger, T. Nonn, S. Durr, and G. Rempe, “Adiabatic following in standing-wave diffraction of atoms,” Appl. Phys. B 69(4), 303–309 (1999). [CrossRef]
  37. B. W. Batterman and H. E. N. D. E. R. S. O. N. Cole, “Dynamical diffraction of X rays by perfect crystals,” Rev. Mod. Phys. 36(3), 681–717 (1964). [CrossRef]
  38. M. L. Calvo, P. Cheben, O. Martínez-Matos, F. del Monte, and J. A. Rodrigo, “Experimental detection of the optical Pendellösung effect,” Phys. Rev. Lett. 97(8), 084801 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited