OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18537–18542

Passively Q-switched erbium-doped fiber laser using evanescent field interaction with gold-nanosphere based saturable absorber

Dengfeng Fan, Chengbo Mou, Xuekun Bai, Shaofei Wang, Na Chen, and Xianglong Zeng  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18537-18542 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1198 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an all-fiber passively Q-switched erbium-doped fiber laser (EDFL) using a gold-nanosphere (GNS) based saturable absorber (SA) with evanescent field interaction. Using the interaction of evanescent field for fabricating SAs, long nonlinear interaction length of evanescent wave and GNSs can be achieved. The GNSs are synthesized from mixing solution of chloroauricacid (HAuCl4) and sodium citrate by the heating effects of the microfiber’s evanescent field radiation. The proposed passively Q-switched EDFL could give output pulses at 1562 nm with pulse width of 1.78 μs, a repetition rate of 58.1 kHz, a pulse energy of 133 nJ and a output power of 7.7 mW when pumped by a 980 nm laser diode of 237 mW.

© 2014 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3540) Lasers and laser optics : Lasers, Q-switched
(160.4330) Materials : Nonlinear optical materials

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 10, 2014
Revised Manuscript: July 14, 2014
Manuscript Accepted: July 15, 2014
Published: July 23, 2014

Dengfeng Fan, Chengbo Mou, Xuekun Bai, Shaofei Wang, Na Chen, and Xianglong Zeng, "Passively Q-switched erbium-doped fiber laser using evanescent field interaction with gold-nanosphere based saturable absorber," Opt. Express 22, 18537-18542 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Kong, L. Liu, C. Sanders, Y. C. Chen, and K. K. Lee, “Phase locking of nanosecond pulses in a passively Q-switched two-element fiber laser array,” Appl. Phys. Lett.90, 151110 (2007). [CrossRef]
  2. P. Pérez-Millán, J. L. Cruz, and M. V. Andrés, “Active Q-switched distributed feedback erbium-doped fiber lasers,” Appl. Phys. Lett.87, 011104 (2005). [CrossRef]
  3. J. Liu, W. Sida, Q. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett.36(20), 4008–4010 (2011). [CrossRef] [PubMed]
  4. D. Zhou, L. Wei, B. Dong, and W. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett.22(1), 9–11 (2010). [CrossRef]
  5. L. Pan, I. Utkin, and R. Fedosejevs, “Passively Q-switched ytterbium-doped double-clad fiber laser with a Cr4+: YAG saturable absorber,” IEEE Photon. Technol. Lett.19(24), 1979–1981 (2007). [CrossRef]
  6. J. Xu, X. Li, Y. Wu, X. Hao, J. He, and K. Yang, “Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser,” Opt. Lett.36(10), 1948–1950 (2011). [CrossRef] [PubMed]
  7. B. Dong, J. Hu, C. Liaw, J. Hao, and C. Yu, “Wideband-tunable nanotube Q-switched low threshold erbium doped fiber laser,” Appl. Opt.50(10), 1442–1445 (2011). [CrossRef] [PubMed]
  8. M. Amos, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express18(22), 23054–23061 (2010). [CrossRef]
  9. H. Liu, K. Chow, S. Yamashita, and S. Set, “Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation,” Opt. Laser Technol.45, 713–716 (2013). [CrossRef]
  10. H. Liao, R. Xiao, J. Fu, P. Yu, G. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au: SiO2 composite films near the percolation threshold,” Appl. Phys. Lett.70, 1–3 (1997). [CrossRef]
  11. M. B. Mohamed and M. A. El-Sayed, “Femtosecond excitation dynamics in gold nanospheres and nanorods,” Phys. Rev. B72, 235405 (2005). [CrossRef]
  12. X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Med. Sci.39, 747–753 (2007). [CrossRef]
  13. K. Tsuboi, S. Fukuba, M. Shimojo, M. Tanaka, K. Furuya, K. Fujita, and K. Kajikawa, “Second-harmonic spectroscopy of surface immobilized gold nanospheres above a gold surface supported by self-assembled monolayers,” J. Chem. Phys.125, 174703 (2006). [CrossRef] [PubMed]
  14. T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett.101, 151122 (2012). [CrossRef]
  15. Z. Kang, X. Guo, Z. Jia, Y. Xu, L. Liu, D. Zhao, G. Qin, and W. Qin, “Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express3(11), 1986–1991 (2013). [CrossRef]
  16. T. Jiang, Z. Kang, G. Qin, J. Zhou, and W. Qin, “Low mode-locking threshold induced by surface plasmon field enhancement of gold nanoparticles,” Opt. Express21(23), 27992–28000 (2013). [CrossRef]
  17. Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett.103, 041105 (2013). [CrossRef]
  18. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol.10(4), 432–438 (1992). [CrossRef]
  19. Q. Fan, J. Cao, Y. Liu, B. Yao, and Q. Mao, “Investigations of the fabrication and the surface enhanced applications for tapered fiber probes prepared with the laser-induced chemical deposition method,” Appl. Opt.52(25), 6163–6169 (2013). [CrossRef] [PubMed]
  20. J. Wang, Z. Luo, M. Zhou, C. Ye, H. Fu, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photon. J.4(5), 1295–1305 (2012). [CrossRef]
  21. Y. Cui, P. P. Shum, G. Wang, H. Chang, X. Q. Dinh, M. Jiang, and G. Humbert, “Size effect of gold nanoparticals on optical microfiber refractive index sensors,” in Proceedings of Sensor, Limerick, Ireland (IEEE, 2011), pp. 371–374.
  22. W. Shin and K. Oh, “Analysis and Measurement of the OH absorption induced loss in a tapered single mode optical fiber,” in Proceedings of Conference of Lasers and Electro-Optics (IEEE, 2002), pp. 237–238.
  23. B. Dong, J. Hao, J. Hu, and C. Liaw, “Wide pulse-repetition-rate range tunable nanotube-switched low threshold erbium-doped fiber laser,” IEEE Photon. Technol. Lett.22(24), 1853–1855 (2010). [CrossRef]
  24. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, K. Librant, M. Zdrojek, L. Lipinska, and K. M. Abramski, “Linearly polarized, Q-switched Er-doped fiber laser based on reduced grapheme oxide saturable absorber,” Appl. Phys. Lett.101, 241106 (2012). [CrossRef]
  25. Z. C. Tiu, F. Ahmad, S. J. Tan, H Ahmad, and S. W. Harun, “Passive Q-switched Erbium-doped fiber laser with graphene-polyethylene oxide saturable absorber in three different gain media,” Indian J Phys.88(7), 727–731 (2014). [CrossRef]
  26. J. Y. Huang, S. C. Huang, H. L. Chang, K. W. Su, Y. F. Chen, and K. F. Huang, “Passive Q switching of Er-Yb fiber laser with semiconductor saturable absorber,” Opt. Express16(5), 3002–3007 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited