OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18564–18578

Eigen oscillations of a chiral sphere and their influence on radiation of chiral molecules

V.V. Klimov, I.V. Zabkov, A.A. Pavlov, and D.V. Guzatov  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18564-18578 (2014)
http://dx.doi.org/10.1364/OE.22.018564


View Full Text Article

Enhanced HTML    Acrobat PDF (3582 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Eigenmodes of a chiral sphere placed in a dielectric medium were investigated in details. Excitation of these eigenmodes by a plane wave and a chiral molecule radiation was studied both analytically and numerically. It was found that decay rates of “right” and “left” enantiomers are different in the presence of the chiral sphere. Strong dependence of radiation pattern of the chiral molecule placed in the vicinity of the chiral sphere on chirality strength was also demonstrated. An interesting correlation between chirality of sphere and spatial spirality (helicity, vorticity ...) of the electromagnetic fields in the presence of chiral sphere was observed for the first time.

© 2014 Optical Society of America

OCIS Codes
(290.4020) Scattering : Mie theory
(290.5840) Scattering : Scattering, molecules
(160.1585) Materials : Chiral media
(160.3918) Materials : Metamaterials
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: April 30, 2014
Revised Manuscript: July 11, 2014
Manuscript Accepted: July 13, 2014
Published: July 24, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Citation
V.V. Klimov, I.V. Zabkov, A.A. Pavlov, and D.V. Guzatov, "Eigen oscillations of a chiral sphere and their influence on radiation of chiral molecules," Opt. Express 22, 18564-18578 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18564


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Kelvin, Baltimor Lectures on Molecular Dynamics and the Wave Theory of Light (C.J. Clay and Sons, 1904).
  2. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House Publishers, 1994).
  3. J. B. Pendry, “A chiral route to negative refraction,” Science306(5700), 1353–1355 (2004). [CrossRef] [PubMed]
  4. B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett.94(15), 151112 (2009). [CrossRef]
  5. E. Plum, J. Zhou, J. Dong, V. Fedotov, T. Koschny, C. Soukoulis, and N. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009). [CrossRef]
  6. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  7. C. F. Bohren, “Light scattering by an optically active sphere,” Chem. Phys. Lett.29(3), 458–462 (1974). [CrossRef]
  8. L. Li, Y. Dan, M. S. Leong, and J. A. Kong, “Electromagnetic scattering by an inhomogeneous chiral sphere of varying permittivity: a discrete analysis using multilayered model,” J. Electromagn. Waves Appl.13(9), 1203–1205 (1999). [CrossRef]
  9. C. F. Bohren, “Scattering of electromagnetic waves by an optically active spherical shell,” J. Chem. Phys.62(4), 1566 (1975). [CrossRef]
  10. L. Li, D. You, M. Leong, and T. Kong, “Electromagnetic scattering by multilayered chiral-media structures: A scattering-to-radiation transform,” Prog. Electromagnetics Res.26, 249–291 (2000). [CrossRef]
  11. P. L. E. Uslenghi, “Scattering by an impedance sphere coated with a chiral layer,” Electromagnetics10(1-2), 201–211 (1990). [CrossRef]
  12. C. Bohren, “Scattering of electromagnetic waves by an optically active cylinder,” J. Colloid Interface Sci.66(1), 105–109 (1978). [CrossRef]
  13. R. Sharma and N. Balakrishnan, “Scattering of electromagnetic waves from chirally coated cylinders,” Smart Mater. Struct.7(4), 512–521 (1998). [CrossRef]
  14. M. Yokota, S. He, and T. Takenaka, “Scattering of a Hermite-Gaussian beam field by a chiral sphere,” J. Opt. Soc. Am. A18(7), 1681–1689 (2001). [CrossRef] [PubMed]
  15. L. Rosenfeld, “Quantenmechanische Theorie der naturlichen optischen Aktivitat von Flussigkeiten und Gasen,” Z. Phys.52(3-4), 161–174 (1929). [CrossRef]
  16. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, 2004).
  17. V. Klimov and M. Ducloy, “Quadrupole transitions near an interface: general theory and application to an atom inside a planar cavity,” Phys. Rev. A72(4), 043809 (2005). [CrossRef]
  18. A. Lakhtakia, V. K. Varadan, and V. V. Varadan, “Radiation by a point electric dipole embedded in a chiral sphere,” J. Phys. D Appl. Phys.23(5), 481–485 (1990). [CrossRef]
  19. N. Engheta and M. W. Kowarz, “Antenna radiation in the presence of a chiral sphere,” J. Appl. Phys.67(2), 639 (1990). [CrossRef]
  20. M. W. Kowarz and N. Engheta, “Spherical chirolenses,” Opt. Lett.15(6), 299–301 (1990). [CrossRef] [PubMed]
  21. A. Lakhtakia, V. K. Varadan, and V. V. Varadan, “Eigenmodes of a chiral sphere with a perfectly conducting coating,” J. Phys. D Appl. Phys.22(6), 825–828 (1989). [CrossRef]
  22. Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett.10(7), 2580–2587 (2010). [CrossRef] [PubMed]
  23. V. V. Klimov, D. V. Guzatov, and M. Ducloy, “Engineering of radiation of optically active molecules with chiral nano-meta-particles,” Europhys. Lett.97(4), 47004 (2012). [CrossRef]
  24. D. V. Guzatov and V. V. Klimov, “The influence of chiral spherical particles on the radiation of optically active molecules,” New J. Phys.14(12), 123009 (2012). [CrossRef]
  25. V. V. Klimov and D. V. Guzatov, “Engineering of radiation of optically active molecules with chiral nano-meta particles,” in Singular and Chiral Nanoplasmonics, S. V. Boriskina and N. Zheludev, eds. (Pan Stanford Publishing, 2014).
  26. B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett.94(15), 151112 (2009). [CrossRef]
  27. V. V. Klimov and D. V. Guzatov, “Focussing dipole radiation by chiral layer with negative refraction: case of thick slab,” Quantum Electron.44 (2014) (in print).
  28. V. V. Klimov and D. V. Guzatov, “Focussing dipole radiation by chiral layer with negative refraction: case of thin slab,” Quantum Electron.submitted.
  29. A. Lakhtakia, V. K. Varadan, and V. V. Varadan, Time-Harmonic Electromagnetic Fields in Chiral Media, Lecture Notes in Physics (Springer-Verlag, 1989), Vol. 335.
  30. L. Allen and S. M. Barnett, Optical Angular Momentum (IOP, 2003).
  31. P. Drude, Lehrbuch Der Optik (Verlag von S. Hirzel, 1906).
  32. M. Born, Optik (SpringerVerlag, 1972).
  33. B. V. Bokut’, A. N. Serdyukov, and F. I. Fedorov, “Phenomenological theory of optically active crystals,” Sov. Phys. Crystallogr.15, 871–874 (1971).
  34. A. Lakhtakia and W. S. Weiglhofer, “Constraint on linear, homogeneous, constitutive relations,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(6), 5017–5019 (1994). [CrossRef] [PubMed]
  35. S. A. R. Horsley, “Consistency of certain constitutive relations with quantum electromagnetism,” Phys. Rev. A84(6), 063822 (2011). [CrossRef]
  36. A. P. Vinogradov, Electrodynamics of Composite Materials (URSS, 2011, in Russian).
  37. www.comsol.com
  38. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley-Interscience, 1983).
  39. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1965).
  40. L. A. Vainshtein, Open Resonators and Open Waveguides (Golem Press, 1969).
  41. D. V. Guzatov, V. V. Klimov, and N. S. Poprukailo, “Spontaneous radiation of a chiral molecule located near a half-space of a bi-isotropic material,” J. Exp. Theor. Phys.116(4), 531–540 (2013). [CrossRef]
  42. J. Wylie and J. Sipe, “Quantum electrodynamics near an interface,” Phys. Rev. A30(3), 1185–1193 (1984). [CrossRef] [PubMed]
  43. J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near an interface. II,” Phys. Rev. A32(4), 2030–2043 (1985). [CrossRef] [PubMed]
  44. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited