OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18579–18587

Photonic crystals as topological high-Q resonators

R. Merlin and S. M. Young  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18579-18587 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1402 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is well known that defects, such as holes, inside an infinite photonic crystal can sustain localized resonant modes whose frequencies fall within a forbidden band. Here we prove that finite, defect-free photonic crystals behave as mirrorless resonant cavities for frequencies within but near the edges of an allowed band, regardless of the shape of their outer boundary. The resonant modes are extended, surface-avoiding (nearly-Dirichlet) states that may lie inside or outside the light cone. Independent of the dimensionality, quality factors and finesses are on the order of, respectively, ( L/λ ) 3 and L/λ , where λ is the vacuum wavelength and L >> λ is a typical size of the crystal. Similar topological modes exist in conventional Fabry-Pérot resonators, and in plasmonic media at frequencies just above those at which the refractive index vanishes.

© 2014 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(160.3918) Materials : Metamaterials
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: April 18, 2014
Revised Manuscript: July 9, 2014
Manuscript Accepted: July 14, 2014
Published: July 24, 2014

R. Merlin and S. M. Young, "Photonic crystals as topological high-Q resonators," Opt. Express 22, 18579-18587 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006). [CrossRef]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  3. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  4. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  5. R. Merlin, “Raman scattering by surface-avoiding acoustic phonons in semi-infinite superlattices,” Philos. Mag. B 70(3), 761–766 (1994). [CrossRef]
  6. M. Trigo, T. A. Eckhause, M. Reason, R. S. Goldman, and R. Merlin, “Observation of surface-avoiding waves: a new class of extended states in periodic media,” Phys. Rev. Lett. 97(12), 124301 (2006). [CrossRef] [PubMed]
  7. M. Charbonneau-Lefort, E. Istrate, M. Allard, J. Poon, and E. H. Sargent, “Photonic crystal heterostructures: Waveguiding phenomena and methods of solution in an envelope function picture,” Phys. Rev. B 65(12), 125318 (2002). [CrossRef]
  8. E. Istrate, A. A. Green, and E. H. Sargent, “Behavior of light at photonic crystal interfaces,” Phys. Rev. B 71(19), 195122 (2005). [CrossRef]
  9. E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78(2), 455–481 (2006). [CrossRef]
  10. T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, “Confined modes in finite-size photonic crystals,” Phys. Rev. B 72(4), 045126 (2005). [CrossRef]
  11. A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40(2), 453–488 (1961). [CrossRef]
  12. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993). [CrossRef] [PubMed]
  13. S. T. Thurman and G. M. Morris, “Controlling the spectral response in guided-mode resonance filter design,” Appl. Opt. 42(16), 3225–3233 (2003). [CrossRef] [PubMed]
  14. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999). [CrossRef]
  15. H. Feshbach, “On the Perturbation of Boundary Conditions,” Phys. Rev. 65(11), 307–318 (1944). [CrossRef]
  16. E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69(11), 681 (1946).
  17. For a discussion of the analogous problem of a particle in a finite one-dimensional periodic potential, see:D. W. L. Sprung, H. Wu, and J. Martorell, “Scattering by a finite periodic potential,” Am. J. Phys. 61(12), 1118–1124 (1993).
  18. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001). [CrossRef] [PubMed]
  19. G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed. (University Press, Cambridge, 1958), p. 198.
  20. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Annalen der Physik 330(3), 377–445 (1908). [CrossRef]
  21. Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19(22), 22191–22197 (2011). [CrossRef] [PubMed]
  22. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  23. K. Song and P. Mazumder, “Dynamic terahertz spoof surface plasmon-polariton switch based on resonance and absorption,” IEEE Trans. Electron. Dev. 58(7), 2172–2176 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited