OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18588–18603

Subsurface damages of fused silica developed during deterministic small tool polishing

Haobo Cheng, Zhichao Dong, Xu Ye, and Hon-Yuen Tam  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18588-18603 (2014)
http://dx.doi.org/10.1364/OE.22.018588


View Full Text Article

Enhanced HTML    Acrobat PDF (4749 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The subsurface damages (SSD) of fused silica developed during deterministic small tool polishing are experimentally investigated in this study. A leather pad (i.e., poromeric) is validated to be nearly SSD-free and superior to pitch and polyurethane. Rough abrasives are found to obviously increase SSD depth, and a leather pad can efficiently suppress the adverse effect of rough abrasives. The SSD depth induced by pitch and polyurethane pads (with rough abrasive) ranges from 0.77 to 1.49μm (~1/7-1/5 of abrasive size). High pressure, low velocity and slurry concentration can slightly increase SSD depth. Material removal rate of leather pad is also validated to be comparable with polyurethane and much higher than pitch tool; surface roughness polished by leather pad is Ra = 1.13nm, which is close to that of pitch but much better than polyurethane.

© 2014 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.5450) Optical design and fabrication : Polishing

ToC Category:
Materials

History
Original Manuscript: May 12, 2014
Revised Manuscript: July 13, 2014
Manuscript Accepted: July 14, 2014
Published: July 24, 2014

Citation
Haobo Cheng, Zhichao Dong, Xu Ye, and Hon-Yuen Tam, "Subsurface damages of fused silica developed during deterministic small tool polishing," Opt. Express 22, 18588-18603 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18588


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Jones, “Optimization of computer controlled polishing,” Appl. Opt.16(1), 218–224 (1977). [CrossRef] [PubMed]
  2. H. B. Cheng, Z. J. Feng, K. Cheng, and Y. W. Wang, “Design of a six-axis high precision machine tool and its application in machining aspherical optical mirrors,” Int. J. Mach. Tools Manuf.45(9), 1085–1094 (2005). [CrossRef]
  3. D. W. Kim, W. H. Park, S. W. Kim, and J. H. Burge, “Parametric modeling of edge effects for polishing tool influence functions,” Opt. Express17(7), 5656–5665 (2009). [CrossRef] [PubMed]
  4. D. W. Kim, W. H. Park, H. K. An, and J. H. Burge, “Parametric smoothing model for visco-elastic polishing tools,” Opt. Express18(21), 22515–22526 (2010). [CrossRef] [PubMed]
  5. A. B. Shorey, S. D. Jacobs, W. I. Kordonski, and R. F. Gans, “Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing,” Appl. Opt.40(1), 20–33 (2001). [CrossRef] [PubMed]
  6. J. C. Lambropoulos, C. L. Miao, and S. D. Jacobs, “Magnetic field effects on shear and normal stresses in magnetorheological finishing,” Opt. Express18(19), 19713–19723 (2010). [CrossRef] [PubMed]
  7. P. M. Shanbhag, M. R. Feinberg, G. Sandri, M. N. Horenstein, and T. G. Bifano, “Ion-beam machining of millimeter scale optics,” Appl. Opt.39(4), 599–611 (2000). [CrossRef] [PubMed]
  8. W. Kordonski, A. Shorey, and A. Sekeres, “New magnetically assisted finishing method: material removal with magnetorheological fluid jet,” Proc. SPIE5l80, 107–114 (2004). [CrossRef]
  9. D. D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, and S. W. Kim, “The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces,” Opt. Express11(8), 958–964 (2003). [CrossRef] [PubMed]
  10. P. Dumas, C. Hall, B. Hallock, and M. Tricard, “Complete sub-aperture pre-polishing & finishing solution to improve speed and determinism in asphere manufacture,” Proc. SPIE6671, 667111 (2007). [CrossRef]
  11. D. Walker, A. Beaucamp, R. Evans, T. Fox-Leonard, N. Fairhurst, C. Gray, S. Hamidi, H. Li, W. Messelink, J. Mitchell, P. Rees, and G. Yu, “Edge-control and surface-smoothness in sub-aperture polishing of mirror segments,” Proc. SPIE8450, 84502A (2012). [CrossRef]
  12. F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A18(10), 2607–2616 (2001). [CrossRef] [PubMed]
  13. M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE5273, 264–272 (2004). [CrossRef]
  14. J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. J. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE5341, 84–101 (2004). [CrossRef]
  15. M. Buijs and K. K. Houten, “A model for lapping of glass,” J. Mater. Sci.28(11), 3014–3020 (1993). [CrossRef]
  16. J. C. Lambropoulos, Y. Li, P. Funkenbusch, and J. Ruckman, “Non-contact estimate of grinding subsurface damage,” Proc. SPIE3782, 41–50 (1999). [CrossRef]
  17. J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceram. Trans.102, 113–128 (1999).
  18. J. C. Lambropoulos, “From abrasive size to subsurface damage in grinding,” Optical Fabrication and Testing, OSA Technical Digest17–18 (2000).
  19. J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some single crystalline optical materials,” Appl. Opt.44(12), 2241–2249 (2005). [CrossRef] [PubMed]
  20. S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots,” Appl. Opt.46(22), 5500–5515 (2007). [CrossRef] [PubMed]
  21. X. Tonnellier, P. Morantz, P. Shore, A. Baldwin, R. Evans, and D. D. Walker, “Subsurface damage in precision ground ULE and Zerodur® surfaces,” Opt. Express15(19), 12197–12205 (2007). [CrossRef] [PubMed]
  22. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids352(52-54), 5601–5617 (2006). [CrossRef]
  23. T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids354(18), 2023–2037 (2008). [CrossRef]
  24. P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE5991, 599101 (2005). [CrossRef]
  25. P. P. Hed and D. F. Edwards, “Optical glass fabrication technology. 2: Relationship between surface roughness and subsurface damage,” Appl. Opt.26(21), 4677–4680 (1987). [CrossRef] [PubMed]
  26. D. Golini and S. D. Jacobs, “Physics of loose abrasive microgrinding,” Appl. Opt.30(19), 2761–2777 (1991). [CrossRef] [PubMed]
  27. J. Neauport, J. Destribats, C. Maunier, C. Ambard, P. Cormont, B. Pintault, and O. Rondeau, “Loose abrasive slurries for optical glass lapping,” Appl. Opt.49(30), 5736–5745 (2010). [CrossRef] [PubMed]
  28. J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express17(22), 20448–20456 (2009). [CrossRef] [PubMed]
  29. J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express17(5), 3543–3554 (2009). [CrossRef] [PubMed]
  30. R. Laheurte, P. Darnis, N. Darbois, O. Cahuc, and J. Neauport, “Subsurface damage distribution characterization of ground surfaces using Abbott-Firestone curves,” Opt. Express20(12), 13551–13559 (2012). [CrossRef] [PubMed]
  31. P. Blaineau, R. Laheurte, P. Darnis, N. Darbois, O. Cahuc, and J. Neauport, “Relations between subsurface damage depth and surface roughness of grinded fused silica,” Opt. Express21(25), 30433–30443 (2013). [CrossRef] [PubMed]
  32. J. B. Johnson, D. W. Kim, R. E. Parks, and J. H. Burge, “New approach for pre-polish grinding with low subsurface damage,” Proc. SPIE8126, 81261E (2011). [CrossRef]
  33. C. J. Evans, E. Paul, D. Dornfeld, D. A. Lucca, G. Byrne, M. Tricard, F. Klocke, O. Dambon, and B. A. Mullany, “Material removal mechanisms in lapping and polishing,” CIRP Annals-Manufacturing Technology52(2), 611–633 (2003). [CrossRef]
  34. Z. C. Dong, H. B. Cheng, and H. Y. Tam, “Modified subaperture tool influence functions of a flat-pitch polisher with reverse-calculated material removal rate,” Appl. Opt.53(11), 2455–2464 (2014). [CrossRef] [PubMed]
  35. J. E. DeGroote, S. D. Jacobs, L. L. Gregg, A. E. Marino, and J. C. Hayes, “Quantitative characterization of optical polishing pitch,” Proc. SPIE4451, 209–221 (2001). [CrossRef]
  36. Y. G. Li, J. Hou, Q. Xu, J. Wang, W. Yang, and Y. B. Guo, “The characteristics of optics polished with a polyurethane pad,” Opt. Express16(14), 10285–10293 (2008). [CrossRef] [PubMed]
  37. R. Williamson, Field Guide to Optical Fabrication (SPIE, 2011), Chap. 2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited