OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18625–18632

Determination of the quasi-TE mode (in-plane) graphene linear absorption coefficient via integration with silicon-on-insulator racetrack cavity resonators

Iain F Crowe, Nicholas Clark, Siham Hussein, Brian Towlson, Eric Whittaker, Milan M Milosevic, Frederic Y Gardes, Goran Z Mashanovich, Matthew P Halsall, and Aravind Vijayaraghaven  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18625-18632 (2014)
http://dx.doi.org/10.1364/OE.22.018625


View Full Text Article

Enhanced HTML    Acrobat PDF (1086 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We examine the near-IR light-matter interaction for graphene integrated cavity ring resonators based on silicon-on-insulator (SOI) race-track waveguides. Fitting of the cavity resonances from quasi-TE mode transmission spectra reveal the real part of the effective refractive index for graphene, neff = 2.23 ± 0.02 and linear absorption coefficient, αgTE = 0.11 ± 0.01dBμm−1. The evanescent nature of the guided mode coupling to graphene at resonance depends strongly on the height of the graphene above the cavity, which places limits on the cavity length for optical sensing applications.

© 2014 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(240.0310) Optics at surfaces : Thin films
(240.6490) Optics at surfaces : Spectroscopy, surface

ToC Category:
Integrated Optics

History
Original Manuscript: May 27, 2014
Revised Manuscript: July 7, 2014
Manuscript Accepted: July 8, 2014
Published: July 24, 2014

Citation
Iain F Crowe, Nicholas Clark, Siham Hussein, Brian Towlson, Eric Whittaker, Milan M Milosevic, Frederic Y Gardes, Goran Z Mashanovich, Matthew P Halsall, and Aravind Vijayaraghaven, "Determination of the quasi-TE mode (in-plane) graphene linear absorption coefficient via integration with silicon-on-insulator racetrack cavity resonators," Opt. Express 22, 18625-18632 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18625


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012). [CrossRef] [PubMed]
  2. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011). [CrossRef] [PubMed]
  3. K. Kim, J. Y. Choi, T. Kim, S. H. Cho, H. J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011). [CrossRef] [PubMed]
  4. D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s Silicon Optical Modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012). [CrossRef]
  5. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011). [CrossRef] [PubMed]
  6. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser and Photonics Reviews 6(1), 47–73 (2012). [CrossRef]
  7. M. K. Park, J. S. Kee, J. Y. Quah, V. Netto, J. Song, Q. Fang, E. M. La Fosse, G.-Q. Lo, “Label-free aptamer sensor based on silicon microring resonators,” Sens. Actuators B Chem. 176, 552–559 (2013). [CrossRef]
  8. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010). [CrossRef]
  9. C. Ciminelli, F. Dell’Olio, D. Conteduca, C. M. Campanella, M. N. Armenise, “High performance SOI microring resonator for biochemical sensing,” Opt. Laser Technol. 59, 60–67 (2014). [CrossRef]
  10. J. E. Moses, A. D. Moorhouse, “The growing applications of click chemistry,” Opt. Express 19(21), 20435–20443 (2011). [PubMed]
  11. H.-Y. Chen, M. Hirtz, X. Deng, T. Laue, H. Fuchs, J. Lahann, “Substrate-independent dip-pen nanolithography based on reactive coatings,” J. Am. Chem. Soc. 132(51), 18023–18025 (2010). [CrossRef] [PubMed]
  12. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009). [CrossRef] [PubMed]
  13. H. Wang, Y. Wang, X. Cao, M. Feng, G. Lan, “Vibrational properties of graphene and graphene layers,” J. Raman Spectrosc. 40(12), 1791–1796 (2009). [CrossRef]
  14. K. Kim, S. Coh, L. Z. Tan, W. Regan, J. M. Yuk, E. Chatterjee, M. F. Crommie, M. L. Cohen, S. G. Louie, A. Zettl, “Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure,” Phys. Rev. Lett. 108(24), 246103 (2012). [CrossRef] [PubMed]
  15. V. M. Menon, W. Tong, S. R. Forrest, “Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 16(5), 1343–1345 (2004). [CrossRef]
  16. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004). [CrossRef] [PubMed]
  17. L. Prechtel, L. Song, D. Schuh, P. Ajayan, W. Wegscheider, A. W. Holleitner, “Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene,” Nat Commun 3, 646 (2012). [CrossRef] [PubMed]
  18. I. Jung, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, S. Watcharotone, M. Hausner, R. S. Ruoff, “Simple approach for high-contrast optical imaging and characterization of graphene-based sheets,” Nano Lett. 7(12), 3569–3575 (2007). [CrossRef]
  19. Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007). [CrossRef] [PubMed]
  20. P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007). [CrossRef]
  21. Z. Lu, W. Zhao, “Nanoscale electro-optic modulation based on graphene-slot waveguides,” J. Opt. Soc. Am. B 29(6), 1490–1496 (2012). [CrossRef]
  22. R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, K. Yamada, “Characterization of optical absorption and polarization dependence of single-layer graphene integrated on a silicon wire waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013). [CrossRef]
  23. H. Li, Y. Anugrah, S. J. Koester, M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012). [CrossRef]
  24. R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014). [CrossRef]
  25. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited