OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18633–18647

Methodology for materials analysis using swept-frequency feedback interferometry with terahertz frequency quantum cascade lasers

Thomas Taimre, Karl Bertling, Yah Leng Lim, Paul Dean, Dragan Indjin, and Aleksandar D. Rakić  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18633-18647 (2014)
http://dx.doi.org/10.1364/OE.22.018633


View Full Text Article

Enhanced HTML    Acrobat PDF (1926 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently, we demonstrated an interferometric materials analysis scheme at terahertz frequencies based on the self-mixing effect in terahertz quantum cascade lasers. Here, we examine the impact of variations in laser operating parameters, target characteristics, laser–target system properties, and the quality calibration standards on our scheme. We show that our coherent scheme is intrinsically most sensitive to fluctuations in interferometric phase, arising primarily from variations in external cavity length. Moreover we demonstrate that the smallest experimental uncertainties in the determination of extinction coefficients are expected for lossy materials.

© 2014 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(140.3430) Lasers and laser optics : Laser theory
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 3, 2014
Revised Manuscript: July 17, 2014
Manuscript Accepted: July 17, 2014
Published: July 24, 2014

Citation
Thomas Taimre, Karl Bertling, Yah Leng Lim, Paul Dean, Dragan Indjin, and Aleksandar D. Rakić, "Methodology for materials analysis using swept-frequency feedback interferometry with terahertz frequency quantum cascade lasers," Opt. Express 22, 18633-18647 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18633


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, D. Indjin, Z. Ikonić, P. Harrison, A. Valavanis, S. P. Khanna, M. Lachab, S. J. Wilson, E. H. Linfield, and A. G. Davies, “Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis,” Opt. Express21, 22194–22205 (2013). [CrossRef]
  2. T. Bardon, R. K. May, P. F. Taday, and M. Strlič, “Systematic study of terahertz time-domain spectra of historically informed black inks,” Analyst138, 4859–4869 (2013). [CrossRef] [PubMed]
  3. M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels,” Opt. Commun.285, 4175–4179 (2012). [CrossRef]
  4. J.-P. Caumes, A. Younus, S. Salort, B. Chassagne, B. Recur, A. Ziéglé, A. Dautant, and E. Abraham, “Terahertz tomographic imaging of XVIIIth Dynasty Egyptian sealed pottery,” Appl. Opt.50, 3604–3608 (2011). [CrossRef] [PubMed]
  5. A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today11, 18–26 (2008). [CrossRef]
  6. W. H. Fan, A. Burnett, P. C. Upadhya, J. Cunningham, E. H. Linfield, and A. G. Davies, “Far-infrared spectroscopic characterization of explosives for security applications using broadband terahertz time-domain spectroscopy,” Appl. Spectrosc.61, 638–643 (2007). [CrossRef] [PubMed]
  7. K. Fukunaga and M. Picollo, “Characterisation of Works of Art,” in Terahertz Spectroscopy and Imaging, K.-E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, (eds.), pp. 521–538, (Springer, Berlin, 2013).
  8. D. Giovannacci, D. Martos-Levif, G. C. Walker, M. Menu, and V. Detalle, “Terahertz applications in cultural heritage: case studies,” in Fundamentals of Laser-Assisted Micro- and Nanotechnologies 2013, Proc. SPIE9065, 906510 (2013). [CrossRef]
  9. B. Hu and M. Nuss, “Imaging with terahertz waves,” Opt. Lett.20, 1716–1718 (1995). [CrossRef] [PubMed]
  10. S. Y. Huang, Y. X. J. Wang, D. K. W. Yeung, A. T. Ahuja, Y.-T. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol.54, 149–160 (2009). [CrossRef]
  11. P. U. Jepsen, J. K. Jensen, and U. Møller, “Characterization of aqueous alcohol solutions in bottles with THz reflection spectroscopy,” Opt. Express16, 9318–9331 (2008). [CrossRef] [PubMed]
  12. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging — Modern techniques and applications,” Laser Photon.Rev.5, 124–166 (2011). [CrossRef]
  13. N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, “7 GHz resolution waveguide THz spectroscopy of explosives related solids showing new features,” Opt. Express16, 4094–4105 (2008). [CrossRef] [PubMed]
  14. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys.39, R301–R310 (2006). [CrossRef]
  15. A. S. Skryl, J. B. Jackson, M. I. Bakunov, M. Menu, and G. A. Mourou, “Terahertz time-domain imaging of hidden defects in wooden artworks: application to a Russian icon painting,” Appl. Opt.53, 1033–1038 (2014). [CrossRef] [PubMed]
  16. G. C. Walker, J. W. Bowen, J. Labaune, J. B. Jackson, S. Hadjiloucas, J. Roberts, G. Mourou, and M. Menu, “Terahertz deconvolution,” Opt. Express20, 27230 (2012). [CrossRef] [PubMed]
  17. P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett.36, 2587–2589 (2011). [CrossRef] [PubMed]
  18. R. P. Green, J.-H. Xu, L. Mahler, A. Tredicucci, F. Beltram, G. Giuliani, H. E. Beere, and D. A. Ritchie, “Linewidth enhancement factor of terahertz quantum cascade lasers,” Appl. Phys. Lett.92, 071106 (2008). [CrossRef]
  19. Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett.99, 081108 (2011). [CrossRef]
  20. F. P. Mezzapesa, L. L. Columbo, M. Brambilla, M. Dabbicco, M. S. Vitiello, and G. Scamarcio, “Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers,” Appl. Phys. Lett.104, 041112 (2014). [CrossRef]
  21. J. von Staden, T. Gensty, W. Elsäßer, G. Giuliani, and C. Mann, “Measurements of the α factor of a distributed-feedback quantum cascade laser by an optical feedback self-mixing technique,” Opt. Lett.31, 2574–2576 (2006). [CrossRef] [PubMed]
  22. F. P. Mezzapesa, L. L. Columbo, M. Brambilla, M. Dabbicco, S. Borri, M. S. Vitiello, H. E. Beere, D. A. Ritchie, and G. Scamarcio, “Intrinsic stability of quantum cascade lasers against optical feedback,” Opt. Express21, 13748–13757 (2013). [CrossRef] [PubMed]
  23. F. P. Mezzapesa, L. L. Columbo, A. Ancona, M. Dabbicco, V. Spagnolo, M. Brambilla, P. M. Lugarà, and G. Scamarcio, “On Line Sensing of Ultrafast Laser Microdrilling Processes by Optical Feedback Interferometry,” Phys. Procedia41, 670–676 (2013). [CrossRef]
  24. K. Bertling, Y. L. Lim, T. Taimre, D. Indjin, P. Dean, R. Weih, S. Höfling, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Demonstration of the self-mixing effect in interband cascade lasers,” Appl. Phys. Lett.103, 231107 (2013). [CrossRef]
  25. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Opt.4, S283–S294 (2002). [CrossRef]
  26. S. Donati, “Laser interferometry by induced modulation of cavity field,” J. Appl. Phys.49, 495–497 (1978). [CrossRef]
  27. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt.34, 4755–4767 (1995). [CrossRef]
  28. K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, 1991).
  29. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron.16, 347–355 (1980). [CrossRef]
  30. G. Beheim and K. Fritsch, “Range finding using frequency-modulated laser diode,” Appl. Opt.25, 1439–1442 (1986). [CrossRef] [PubMed]
  31. F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt.37, 6684–6689 (1998). [CrossRef]
  32. S. Shinohara, H. Yoshida, H. Ikeda, K. Nishide, and M. Sumi, “Compact and high-precision range finder with wide dynamic range and its application,” IEEE Trans. Instrum. Meas.41, 40–44 (1992). [CrossRef]
  33. G. A. Acket, D. Lenstra, A. J. den Boef, and B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron.20, 1163– 1169 (1984). [CrossRef]
  34. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18, 259–264 (1982). [CrossRef]
  35. M. Osiński and J. Buus, “Linewidth broadening factor in semiconductor lasers — An overview,” IEEE J. Quantum Electron.23, 9–29 (1987). [CrossRef]
  36. P. Spencer, P. Rees, and I. Pierce, “Theoretical analysis,” in Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor LasersD. M. Kane and K. A. Shore, eds. (John Wiley & Sons, 2005), pp. 23–54. [CrossRef]
  37. T. Taimre and A. D. Rakić, “On the nature of Acket’s characteristic parameter C in semiconductor lasers,” Appl. Opt.53, 1001–1006 (2014). [CrossRef] [PubMed]
  38. R. Kliese, T. Taimre, A. A. A. Bakar, Y. L. Lim, K. Bertling, M. Nikolić, J. Perchoux, T. Bosch, and A. D. Rakić, “Solving self-mixing equations for arbitrary feedback levels: a concise algorithm,” Appl. Opt.53, 3723–3736 (2014). [CrossRef] [PubMed]
  39. G. Plantier, C. Bès, and T. M. Bosch, “Behavioral model of a self-mixing laser diode sensor,” IEEE J. Quantum Electron.41, 1157–1167 (2005). [CrossRef]
  40. Y. L. Lim, K. Bertling, P. Rio, J. Tucker, and A. D. Rakić, “Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect,” in Photonics: Design, Technology, and Packaging II, D. Abbott, Y. S. Kivshar, H. H. Rubinsztein-Dunlop, and S. Fan, eds., Proc. SPIE6038, 60381O-1 (2006).
  41. S. Donati, Electro-Optical Instrumentation: Sensing and Measuring with Lasers (Prentice Hall, Upper Saddle River, 2004).
  42. D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of Monte Carlo Methods (Wiley, New York, 2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited