OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18648–18661

Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers

Kai-Hung Lo, Sheng-Kwang Hwang, and Silvano Donati  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18648-18661 (2014)
http://dx.doi.org/10.1364/OE.22.018648


View Full Text Article

Enhanced HTML    Acrobat PDF (5487 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Effects of optical feedback on period-one nonlinear dynamics of an optically injected semiconductor laser are numerically investigated. The optical feedback can suppress the period-one dynamics and excite other more complex dynamics if the feedback level is high except for extremely short feedback delay times. Within the range of the period-one dynamics, however, the optical feedback can stabilize the period-one dynamics in such a manner that significant reduction of microwave linewidth and phase noise is achieved, up to more than two orders of magnitude. A high feedback level and/or a long feedback delay time are generally preferred for such microwave stabilization. However, considerably enhanced microwave linewidth and phase noise happen periodically at certain feedback delay times, which is strongly related to the behavior of locking between the period-one microwave oscillation and the feedback loop modes. The extent of these enhancements reduces if the feedback level is high. While the microwave frequency only slightly changes with the feedback level, it red-shifts with the feedback delay time before an abrupt blue-shift occurs periodically. With the presence of the laser intrinsic noise, frequency jitters occur around the feedback delay times leading to the abrupt blue-shifts, ranging from the order of 0.1 GHz to the order of 1 GHz.

© 2014 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(140.3520) Lasers and laser optics : Lasers, injection-locked
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.3100) Nonlinear optics : Instabilities and chaos
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
RF and Microwave Photonics

History
Original Manuscript: June 13, 2014
Revised Manuscript: July 16, 2014
Manuscript Accepted: July 16, 2014
Published: July 24, 2014

Citation
Kai-Hung Lo, Sheng-Kwang Hwang, and Silvano Donati, "Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers," Opt. Express 22, 18648-18661 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18648


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. B.  Simpson, J. M.  Liu, K. F.  Huang, K.  Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997). [CrossRef]
  2. S. K.  Hwang, J. M.  Liu, J. K.  White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004). [CrossRef]
  3. S. K.  Hwang, D. H.  Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006). [CrossRef]
  4. S. C.  Chan, S. K.  Hwang, J. M.  Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15, 14921–14935 (2007). [CrossRef] [PubMed]
  5. A.  Murakami, K.  Kawashima, K.  Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003). [CrossRef]
  6. S. C.  Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010). [CrossRef]
  7. S. K.  Hwang, S. C.  Chan, S. C.  Hsieh, C.Y.  Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011). [CrossRef]
  8. S. K.  Hwang, H. F.  Chen, C. Y.  Lin, “All-optical frequency conversion using nonlinear dynamics of semiconductor lasers,” Opt. Lett. 34, 812–814 (2009). [CrossRef] [PubMed]
  9. C. H.  Chu, S. L.  Lin, S. C.  Chan, S. K.  Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012). [CrossRef]
  10. S. C.  Chan, S. K.  Hwang, J. M.  Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006). [CrossRef] [PubMed]
  11. Y. H.  Hung, C. H.  Chu, S. K.  Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38, 1482–1484 (2013). [CrossRef] [PubMed]
  12. Y. H.  Hung, S. K.  Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Opt. Lett. 38, 3355–3358 (2013). [CrossRef] [PubMed]
  13. T. B.  Simpson, F.  Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11, 1476–1478 (1999). [CrossRef]
  14. S. C.  Chan, J. M.  Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004). [CrossRef]
  15. M.  Pochet, N. A.  Naderi, Y.  Li, V.  Kovanis, L. F.  Lester, Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett. 22, 763–765 (2010). [CrossRef]
  16. X. Q.  Qi, J. M.  Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011). [CrossRef]
  17. Y. S.  Yuan, F. Y.  Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011). [CrossRef]
  18. A.  Quirce, A.  Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express 20, 13390–13401 (2012). [CrossRef] [PubMed]
  19. J. P.  Zhuang, S. C.  Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38, 344–346 (2013). [CrossRef] [PubMed]
  20. T. B.  Simpson, J. M.  Liu, M.  AlMulla, N. G.  Usechak, V.  Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013). [CrossRef]
  21. A.  Hurtado, J.  Mee, M.  Nami, I. D.  Henning, M. J.  Adams, L. F.  Lester, “Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser,” Opt. Express 21, 10772–10778 (2013). [CrossRef] [PubMed]
  22. U.  Gliese, T. N.  Nielsen, M.  Bruun, E. L.  Christensen, K. E.  Stubkjaer, S.  Lindgren, B.  Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992). [CrossRef]
  23. X. S.  Yao, L.  Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996). [CrossRef]
  24. C. T.  Lin, P. T.  Shih, W. J.  Jiang, J.  Chen, P. C.  Peng, S.  Chi, “A continuously tunable and filterless optical millimeter-wave generation via frequency octupling,” Opt. Express 17, 19749–19756 (2009). [CrossRef] [PubMed]
  25. A.  Kaszubowska, L. P.  Barry, P.  Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002). [CrossRef]
  26. C.  Cui, X.  Fu, S. C.  Chan, “Double-locked semiconductor laser for radio-over-fiber uplink transmission,” Opt. Lett. 34, 3821–3823 (2009). [CrossRef] [PubMed]
  27. V.  Annovazzi Lodi, A.  Scir, M.  Sorel, S.  Donati, “Dynamical behavior and locking of semiconductor laser subjected to injection,” IEEE J. Quantum Electron. 34, 2350–2356 (1998). [CrossRef]
  28. S.  Wieczorek, B.  Krauskopf, T. B.  Simpson, D.  Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005). [CrossRef]
  29. S.  Donati, S. K.  Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Prog. Quantum Electron. 36, 293–341 (2012). [CrossRef]
  30. T. B.  Simpson, J. M.  Liu, “Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys. 73, 2587–2589 (1993). [CrossRef]
  31. J. M.  Liu, T. B.  Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994). [CrossRef]
  32. T. B.  Simpson, J. M.  Liu, “Spontaneous emission, nonlinear optical coupling, and noise in laser diodes,” Opt. Commun. 112, 43–47 (1994). [CrossRef]
  33. S. K.  Hwang, J. B.  Gao, J. M.  Liu, “Noise-induced chaos in an optically injected semiconductor laser model,” Phys. Rev. E 61, 5162–5170 (2000). [CrossRef]
  34. S. K.  Hwang, J. M.  Liu, J. K.  White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-μm semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004). [CrossRef]
  35. T. B.  Simpson, J. M.  Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 9, 1322–1324 (1997). [CrossRef]
  36. T. B.  Simpson, J. M.  Liu, A.  Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995). [CrossRef]
  37. O.  Solgaard, K. Y.  Lau, “Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers,” IEEE Photon. Technol. Lett. 5, 1264–1266 (1993). [CrossRef]
  38. C. Y.  Lin, F.  Grillot, N. A.  Naderi, Y.  Li, L. F.  Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010). [CrossRef]
  39. R.  Rosales, K.  Merghem, A.  Martinez, A.  Akrout, J. P.  Tourrence, A.  Accard, F.  Lelarge, A.  Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μ applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011). [CrossRef]
  40. C.  Simos, H.  Simos, C.  Mesaritakis, A.  Kapsalis, D.  Syvridis, “Pulse and noise properties of a two section passively mode-locked quantum dot laser under long delay feedback,” Opt. Commun. 313, 248–255 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited