OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18668–18687

Flexible focus function consisting of convex function and image enhancement filter

Kai Wang, Yuntao Qian, Minchao Ye, and Zhijian Luo  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18668-18687 (2014)
http://dx.doi.org/10.1364/OE.22.018668


View Full Text Article

Enhanced HTML    Acrobat PDF (5540 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new focus function Λ that, like many of the existing focus functions, consists of a convex function and an image enhancement filter. Λ is rather flexible because for any convex function and image enhancement filter, it is a focus function. We proved that Λ is a focus function using a model and Jensen’s inequality. Furthermore, we generated random Λs and experimentally applied them to simulated and real blurred images, finding that 98% and 99% of the random Λs, respectively, have a maximum value at the best-focused image and most of them decrease as the defocus increases. We also applied random Λs to motion-blurred images, blurred images in different-sized windows, and blurred images with different types of noise. We found that Λ can be applied to motion blur and is robust to different-sized windows and different noise types.

© 2014 Optical Society of America

OCIS Codes
(000.3870) General : Mathematics
(110.3000) Imaging systems : Image quality assessment
(180.0180) Microscopy : Microscopy
(260.5950) Physical optics : Self-focusing

ToC Category:
Image Processing

History
Original Manuscript: January 2, 2014
Revised Manuscript: March 12, 2014
Manuscript Accepted: July 14, 2014
Published: July 25, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Kai Wang, Yuntao Qian, Minchao Ye, and Zhijian Luo, "Flexible focus function consisting of convex function and image enhancement filter," Opt. Express 22, 18668-18687 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18668


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Zhang, Z. Ye, T. Zhao, Y. Chen, and F. Yu, “Point spread function characteristics analysis of the wavefront coding system,” Opt. Express15(4), 1543–1552 (2007). [CrossRef] [PubMed]
  2. P. Favaro, “Shape from focus, and, defocus: convexity, quasiconvexity and defocus-invariant textures,” in ICCV (2007).
  3. Y. Sun, S. Duthaler, and B. J. Nelson, “Autofocusing in computer microscopy: Selecting the optimal focus algorithm,” Microsc. Res. Tech.65(3), 139–149 (2004). [CrossRef] [PubMed]
  4. Y. Sun, S. Duthaler, and B. J. Nelson, “Autofocusing algorithm selection in computer microscopy,” in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005) (IEEE, 2005).
  5. J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem.24(1), 100–111 (1976). [CrossRef] [PubMed]
  6. F. C. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry6(2), 81–91 (1985). [CrossRef] [PubMed]
  7. E. Krotkov, “Focusing,” Int. J. Comput. Vis.1(3), 223–237 (1987). [CrossRef]
  8. M. Subbarao, T. S. Choi, and A. Nikzad, “Focusing techniques,” Opt. Eng.32(11), 2824–2836 (1993). [CrossRef]
  9. S. K. Nayar and Y. Nakagawa, ““Shape from focus,” IEEE Trans. Pattern Anal. Mach. Intell.16, 824–831 (1994).
  10. A. Santos, C. Ortiz de Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc.188(3), 264–272 (1997). [CrossRef] [PubMed]
  11. J. Daugman, “How iris recognition works,” IEEE Trans. Circuits Syst. Video Technol.14(1), 21–30 (2004). [CrossRef]
  12. B. J. Kang and K. R. Park, “A study on iris image restoration,” in International Conference on Audio- and Video-Based Biometric Person Authentication (2005), pp. 31–40. [CrossRef]
  13. P. Langehanenberg, B. Kemper, and G. Bally, “Autofocus algorithms for digital-holographic microscopy,” in European Conference on Biomedical Optics, Optical Society of America (2007).
  14. S. Y. Lee, Y. Kumar, J. M. Cho, S. W. Lee, and S. W. Kim, “Enhanced autofocus algorithm using robust focus measure and fuzzy reasoning,” IEEE Trans. Circuits Syst. Video Technol.18(9), 1237–1246 (2008). [CrossRef]
  15. F. Quan, K. Han, and X. C. Zhu, “A new auto-focusing method based on the center blocking DCT,” in Fourth International Conference on Image and Graphics ( ICIG 2007) (2007).
  16. W. Jian and H. B. Chen, “A novel auto-focus function,” in 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT 2012) (International Society for Optics and Photonics, 2012).
  17. M. L. Mendelsohn and B. H. Mayall, “Computer-oriented analysis of human chromosomes. 3. Focus,” Comput. Biol. Med.2(2), 137–150 (1972). [CrossRef] [PubMed]
  18. L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston., “Comparison of autofocus methods for automated microscopy,” Cytometry12(3), 195–206 (1991). [CrossRef] [PubMed]
  19. S. L. Brázdilová and M. Kozubek, “Information content analysis in automated microscopy imaging using an adaptive autofocus algorithm for multimodal functions,” J. Microsc.236(3), 194–202 (2009). [CrossRef] [PubMed]
  20. H. Peter, J. Schulz, and K. H. Englmeier, “Content-based autofocusing in automated microscopy,” Image Anal. Stereol.29(3), 173–180 (2010). [CrossRef]
  21. D. C. Tsai and H. H. Chen, “Effective autofocus decision using reciprocal focus profile,” in 18th IEEE International Conference on Image Processing (ICIP) (IEEE, 2011). [CrossRef]
  22. L. Xu, M. Mater, and J. Ni, “Focus detection criterion for refocusing in multi-wavelength digital holography,” Opt. Express19(16), 14779–14793 (2011). [CrossRef] [PubMed]
  23. P. Ferraro, P. Memmolo, C. Distante, M. Paturzo, A. Finizio, and B. Javidi, “An autofocusing algorithm for digital holograms,” Proc. SPIE8384, 838408 (2012).
  24. P. Gao, B. Yao, R. Rupp, J. Min, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, and T. Ye, “Autofocusing based on wavelength dependence of diffraction in two-wavelength digital holographic microscopy,” Opt. Lett.37(7), 1172–1174 (2012). [CrossRef] [PubMed]
  25. D. T. Elozory, K. A. Kramer, B. Chaudhuri, O. P. Bonam, D. B. Goldgof, L. O. Hall, and P. R. Mouton, “Automatic section thickness determination using an absolute gradient focus function,” J. Microsc.248(3), 245–259 (2012). [CrossRef] [PubMed]
  26. G. V. Poropat, “Effect of system point spread function, apparent size, and detector instantaneous field of view on the infrared image contrast of small objects,” Opt. Eng.32(10), 2598–2607 (1993). [CrossRef]
  27. F. F. Yin, M. L. Giger, and K. Doi, “Measurement of the presampling modulation transfer function of film digitizers using a curve fitting technique,” Med. Phys.17(6), 962–966 (1990). [CrossRef] [PubMed]
  28. S. E. Reichenbach, S. K. Park, and R. Narayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng.30(2), 170–177 (1991). [CrossRef]
  29. A. P. Tzannes and J. M. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng.34(6), 1808–1817 (1995). [CrossRef]
  30. T. Li, H. Feng, Z. Xu, X. Li, Z. Cen, and Q. Li, “Comparison of different analytical edge spread function models for MTF calculation using curve-fitting,” Proc. SPIE7498, 74981H (2009). [CrossRef]
  31. E. Artin, “Uber die Zerlegung definiter Funktionen in Quadrate,” Abh. Math. Seminar Univ. Hamburg5, 85–99 (1927).
  32. M. J. Nasse and J. C. Woehl, “Realistic modeling of the illumination point spread function in confocal scanning optical microscopy,” J. Opt. Soc. Am. A27(2), 295–302 (2010). [CrossRef] [PubMed]
  33. A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian, “Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data,” IEEE Trans. Image Process.17(10), 1737–1754 (2008). [CrossRef] [PubMed]
  34. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell.12(7), 629–639 (1990). [CrossRef]
  35. J. L. W. V. Jensen, “Sur les fonctions convexes et les inégalités entre les valeurs moyennes,” Acta Math.30(1), 175–193 (1906). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited