OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18698–18706

Lidar extinction-to-backscatter ratio of the ocean

James H. Churnside, James M. Sullivan, and Michael S. Twardowski  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18698-18706 (2014)
http://dx.doi.org/10.1364/OE.22.018698


View Full Text Article

Enhanced HTML    Acrobat PDF (1199 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Bio-optical models are used to develop a model of the lidar extinction-to-backscatter ratio applicable to oceanographic lidar. The model is based on chlorophyll concentration, and is expected to be valid for Case 1 waters. The limiting cases of narrow- and wide-beam lidars are presented and compared with estimates based on in situ optical measurements. Lidar measurements are also compared with the model using in situ or satellite estimates of chlorophyll concentration. A modified lidar ratio is defined, in which the properties of pure sea water are removed. This modified ratio is shown to be nearly constant for wide-beam lidar operating in low-chlorophyll waters, so accurate inversion to derive extinction and backscattering is possible under these conditions. This ratio can also be used for lidar calibration.

© 2014 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 16, 2014
Revised Manuscript: July 19, 2014
Manuscript Accepted: July 20, 2014
Published: July 25, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Citation
James H. Churnside, James M. Sullivan, and Michael S. Twardowski, "Lidar extinction-to-backscatter ratio of the ocean," Opt. Express 22, 18698-18706 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18698


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Churnside, “Review of profiling oceanographic lidar,” Opt. Engineer.53(5), 051405 (2014). [CrossRef]
  2. J. H. Churnside and J. J. Wilson, “Airborne lidar for fisheries applications,” Opt. Eng.40(3), 406–414 (2001). [CrossRef]
  3. J. H. Churnside, A. F. Sharov, and R. A. Richter, “Aerial surveys of fish in estuaries: a case study in Chesapeake Bay,” ICES J. Mar. Sci.68(1), 239–244 (2011). [CrossRef]
  4. J. H. Churnside and P. L. Donaghay, “Thin scattering layers observed by airborne lidar,” ICES J. Mar. Sci.66(4), 778–789 (2009). [CrossRef]
  5. M. A. Montes-Hugo, A. Weidemann, R. Gould, R. Arnone, J. H. Churnside, and E. Jaroz, “Ocean color patterns help to predict depth of optical layers in stratified coastal waters,” J. Appl. Remote Sens.5(1), 053548 (2011). [CrossRef]
  6. J. H. Churnside, R. D. Marchbanks, J. H. Lee, J. A. Shaw, A. Weidemann, and P. L. Donaghay, “Airborne lidar detection and characterization of internal waves in a shallow fjord,” J. Appl. Remote Sens.6(1), 063611 (2012). [CrossRef]
  7. J. H. Churnside and L. A. Ostrovsky, “Lidar observation of a strongly nonlinear internal wave train in the Gulf of Alaska,” Int. J. Remote Sens.26(1), 167–177 (2005). [CrossRef]
  8. O. A. Bukin, A. Y. Major, A. N. Pavlov, B. M. Shevtsov, and E. D. Kholodkevich, “Measurement of the lightscattering layers structure and detection of the dynamic processes in the upper ocean layer by shipborne lidar,” Int. J. Remote Sens.19(4), 707–715 (1998). [CrossRef]
  9. J. H. Churnside, V. V. Tatarskii, and J. J. Wilson, “Oceanographic lidar attenuation coefficients and signal fluctuations measured from a ship in the Southern California Bight,” Appl. Opt.37(15), 3105–3112 (1998). [CrossRef] [PubMed]
  10. J. Churnside, B. McCarty, and X. Lu, “Subsurface signals from ocean an orbiting polarization lidar,” Remote Sens.5(7), 3457–3475 (2013). [CrossRef]
  11. M. J. Behrenfeld, Y. Hu, C. A. Hostetler, G. Dall’Olmo, S. D. Rodier, J. W. Hair, and C. R. Trepte, “Space‐based lidar measurements of global ocean carbon stocks,” Geophys. Res. Lett.40(16), 4355–4360 (2013). [CrossRef]
  12. Y. Hu, “Depolarization ratio-effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination,” Geophys. Res. Lett.34(11), L11812 (2007). [CrossRef]
  13. W.-N. Chen, C.-W. Chiang, and J.-B. Nee, “Lidar ratio and depolarization ratio for cirrus clouds,” Appl. Opt.41(30), 6470–6476 (2002). [CrossRef] [PubMed]
  14. I. Mattis, A. Ansmann, D. Müller, U. Wandinger, and D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett.29, 014721 (2002).
  15. Z. Liu, N. Sugimoto, and T. Murayama, “Extinction-to-backscatter ratio of asian dust observed with high-spectral-resolution lidar and Raman lidar,” Appl. Opt.41(15), 2760–2767 (2002). [CrossRef] [PubMed]
  16. G. Pappalardo, A. Amodeo, L. Mona, M. Pandolfi, N. Pergola, and V. Cuomo, “Raman lidar observations of aerosol emitted during the 2002 Etna eruption,” Geophys. Res. Lett.31(5), L05120 (2004). [CrossRef]
  17. A. H. Omar, D. M. Winker, M. A. Vaughan, Y. Hu, C. R. Trepte, R. A. Ferrare, K.-P. Lee, C. A. Hostetler, C. Kittaka, R. R. Rogers, R. E. Kuehn, and Z. Liu, “The CALIPSO automated aerosol classification and lidar ratio selection algorithm,” J. Atmos. Ocean. Technol.26(10), 1994–2014 (2009). [CrossRef]
  18. H. R. Gordon, “Interpretation of airborne oceanic lidar: effects of multiple scattering,” Appl. Opt.21(16), 2996–3001 (1982). [CrossRef] [PubMed]
  19. J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosol: A numerical study,” J. Atmos. Ocean. Technol.15(4), 1043–1050 (1998). [CrossRef]
  20. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res.: Ocean.106(C4), 7163–7180 (2001). [CrossRef]
  21. A. Morel, “Light and marine photosynthesis: a spectral model with geochemical and climatological implications,” Prog. Oceanogr.26(3), 263–306 (1991). [CrossRef]
  22. L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr.26(4), 671–689 (1981). [CrossRef]
  23. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt.36(33), 8710–8723 (1997). [CrossRef] [PubMed]
  24. H. R. Gordon and A. Morel, “Remote assessment of ocean color for interpretation of satellite visible imagery, a review,” in Lecture notes on coastal and estuarine studies (Springer Verlag, 1983), p. 114.
  25. H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: A reexamination,” Limnol. Oceanogr.43(5), 847–858 (1998). [CrossRef]
  26. T. J. Petzold, “Volume scattering functions for selected ocean waters,” (Scripts Institution of Oceanography, 1972).
  27. C. D. Mobley, Light and Water: Radiative transfer in natural waters (Academic, 1994), p. 592.
  28. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt.32(36), 7484–7504 (1993). [CrossRef] [PubMed]
  29. A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt.41(30), 6289–6306 (2002). [CrossRef] [PubMed]
  30. J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt.48(35), 6811–6819 (2009). [CrossRef] [PubMed]
  31. M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an AC-9,” J. Atmos. Ocean. Technol.16(6), 691–707 (1999). [CrossRef]
  32. J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, “Scattering error correction of reflecting-tube absorption meters,” in Proc. SPIE 2258, Ocean Optics XII, (SPIE, 1994), 44–55.
  33. J. Sullivan, M. Twardowski, J. Ronald, V. Zaneveld, and C. Moore, “Measuring optical backscattering in water,” in Light Scattering Reviews 7 (Springer, 2013), pp. 189–224.
  34. Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110, C02017 (2005).
  35. J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, and S. A. Freeman, “Use of optical scattering to discriminate particle types in coastal waters,” Appl. Opt.44(9), 1667–1680 (2005). [CrossRef] [PubMed]
  36. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parametrization,” J. Geophys. Res.100(C7), 13321–13332 (1995). [CrossRef]
  37. J. H. Churnside, “Polarization effects on oceanographic lidar,” Opt. Express16(2), 1196–1207 (2008). [CrossRef] [PubMed]
  38. J. H. Lee, J. H. Churnside, R. D. Marchbanks, P. L. Donaghay, and J. M. Sullivan, “Oceanographic lidar profiles compared with estimates from in situ optical measurements,” Appl. Opt.52(4), 786–794 (2013). [CrossRef] [PubMed]
  39. M. A. Montes, J. Churnside, Z. Lee, R. Gould, R. Arnone, and A. Weidemann, “Relationships between water attenuation coefficients derived from active and passive remote sensing: a case study from two coastal environments,” Appl. Opt.50(18), 2990–2999 (2011). [CrossRef] [PubMed]
  40. E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol.21(5), 777–786 (2004). [CrossRef]
  41. M. A. Vaughan, Z. Liu, M. J. McGill, Y. Hu, and M. D. Obland, “On the spectral dependence of backscatter from cirrus clouds: Assessing CALIOP's 1064 nm calibration assumptions using cloud physics lidar measurements,” J. Geophys. Res. Atmos.115(D14), D14206 (2010). [CrossRef]
  42. Y. Wu, C. M. Gan, L. Cordero, B. Gross, F. Moshary, and S. Ahmed, “Calibration of the 1064 nm lidar channel using water phase and cirrus clouds,” Appl. Opt.50(21), 3987–3999 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited