OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18724–18735

Ultrafast 2D IR microscopy

Carlos R. Baiz, Denise Schach, and Andrei Tokmakoff  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18724-18735 (2014)
http://dx.doi.org/10.1364/OE.22.018724


View Full Text Article

Enhanced HTML    Acrobat PDF (3847 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments.

© 2014 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(300.0300) Spectroscopy : Spectroscopy
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.5540) Ultrafast optics : Pulse shaping
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: June 13, 2014
Revised Manuscript: July 16, 2014
Manuscript Accepted: July 16, 2014
Published: July 25, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Carlos R. Baiz, Denise Schach, and Andrei Tokmakoff, "Ultrafast 2D IR microscopy," Opt. Express 22, 18724-18735 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18724


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Manor, P. Mukherjee, Y. S. Lin, H. Leonov, J. L. Skinner, M. T. Zanni, and I. T. Arkin, “Gating mechanism of the influenza A M2 channel revealed by 1D and 2D IR spectroscopies,” Structure17(2), 247–254 (2009). [CrossRef] [PubMed]
  2. A. Remorino and R. M. Hochstrasser, “Three-dimensional structures by two-dimensional vibrational spectroscopy,” Acc. Chem. Res.45(11), 1896–1905 (2012). [CrossRef] [PubMed]
  3. M. D. Fayer, “Water in a crowd,” Physiology26(6), 381–392 (2011). [CrossRef] [PubMed]
  4. A. A. Bakulin, C. Liang, T. la Cour Jansen, D. A. Wiersma, H. J. Bakker, and M. S. Pshenichnikov, “Hydrophobic solvation: a 2D IR spectroscopic inquest,” Acc. Chem. Res.42(9), 1229–1238 (2009). [CrossRef] [PubMed]
  5. D. G. Kuroda, J. D. Bauman, J. R. Challa, D. Patel, T. Troxler, K. Das, E. Arnold, and R. M. Hochstrasser, “Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase,” Nat. Chem.5(3), 174–181 (2013). [CrossRef] [PubMed]
  6. H. S. Chung, M. Khalil, A. W. Smith, Z. Ganim, and A. Tokmakoff, “Conformational changes during the nanosecond-to-millisecond unfolding of ubiquitin,” Proc. Natl. Acad. Sci. U.S.A.102(3), 612–617 (2005). [CrossRef] [PubMed]
  7. M. S. Lynch, K. M. Slenkamp, and M. Khalil, “Communication: Probing non-equilibrium vibrational relaxation pathways of highly excited C≡N stretching modes following ultrafast back-electron transfer,” J. Chem. Phys.136(24), 241101 (2012). [CrossRef] [PubMed]
  8. C. R. Baiz, R. McCanne, and K. J. Kubarych, “Structurally selective geminate rebinding dynamics of solvent-caged radicals studied with nonequilibrium infrared echo spectroscopy,” J. Am. Chem. Soc.131(38), 13590–13591 (2009). [CrossRef] [PubMed]
  9. L. W. Barbour, M. Hegadorn, and J. B. Asbury, “Watching electrons move in real time: ultrafast infrared spectroscopy of a polymer blend photovoltaic material,” J. Am. Chem. Soc.129(51), 15884–15894 (2007). [CrossRef] [PubMed]
  10. H. Chen, X. Wen, J. Li, and J. Zheng, “Molecular distances determined with resonant vibrational energy transfers,” J. Phys. Chem. A118(13), 2463–2469 (2014). [CrossRef] [PubMed]
  11. C. S. Peng, K. C. Jones, and A. Tokmakoff, “Anharmonic vibrational modes of nucleic acid bases revealed by 2D IR spectroscopy,” J. Am. Chem. Soc.133(39), 15650–15660 (2011). [CrossRef] [PubMed]
  12. M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev.108(4), 1331–1418 (2008). [CrossRef] [PubMed]
  13. C. S. Peng, C. R. Baiz, and A. Tokmakoff, “Direct observation of ground-state lactam-lactim tautomerization using temperature-jump transient 2D IR spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.110(23), 9243–9248 (2013). [CrossRef] [PubMed]
  14. C. R. Baiz, C. S. Peng, M. E. Reppert, K. C. Jones, and A. Tokmakoff, “Coherent two-dimensional infrared spectroscopy: quantitative analysis of protein secondary structure in solution,” Analyst137(8), 1793–1799 (2012). [CrossRef] [PubMed]
  15. R. Salzer and H. W. Siesler, Infrared and Raman Spectroscopic Imaging (Wiley-VCH, 2009).
  16. D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst131(8), 875–885 (2006). [CrossRef] [PubMed]
  17. M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, and C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods10(9), 861–864 (2013). [CrossRef] [PubMed]
  18. A. Remorino, I. V. Korendovych, Y. B. Wu, W. F. DeGrado, and R. M. Hochstrasser, “Residue-specific vibrational echoes yield 3D structures of a transmembrane helix dimer,” Science332(6034), 1206–1209 (2011). [CrossRef] [PubMed]
  19. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003). [CrossRef] [PubMed]
  20. W. Wagner, C. Li, J. Semmlow, and W. Warren, “Rapid phase-cycled two-dimensional optical spectroscopy in fluorescence and transmission mode,” Opt. Express13(10), 3697–3706 (2005). [CrossRef] [PubMed]
  21. B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem.82(9), 3474–3486 (2010). [CrossRef] [PubMed]
  22. S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11(5), 748–761 (2009). [CrossRef] [PubMed]
  23. P. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).
  24. G. Cinque, M. D. Frogley, and R. Bartolini, “Far-IR/THz spectral characterization of the coherent synchrotron radiation emission at diamond IR beamline B22,” Rendiconti Lincei22(1), 33–47 (2011). [CrossRef]
  25. C. R. Baiz, P. L. McRobbie, N. K. Preketes, K. J. Kubarych, and E. Geva, “Two-dimensional infrared spectroscopy of dimanganese decacarbonyl and its photoproducts: an ab initio study,” J. Phys. Chem. A113(35), 9617–9623 (2009). [CrossRef] [PubMed]
  26. C. R. Baiz, K. J. Kubarych, E. Geva, and E. L. Sibert, “Local-mode approach to modeling multidimensional infrared spectra of metal carbonyls,” J. Phys. Chem. A115(21), 5354–5363 (2011). [CrossRef] [PubMed]
  27. L. Wei, Y. Yu, Y. H. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.110(28), 11226–11231 (2013). [CrossRef] [PubMed]
  28. K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000). [CrossRef] [PubMed]
  29. J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express16(22), 17420–17428 (2008). [CrossRef] [PubMed]
  30. A. Zoubir, Raman Imaging: Techniques and Applications (Springer, 2012).
  31. D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc.134(8), 3623–3626 (2012). [CrossRef] [PubMed]
  32. H. Frostig, O. Katz, A. Natan, and Y. Silberberg, “Single-pulse stimulated Raman scattering spectroscopy,” Opt. Lett.36(7), 1248–1250 (2011). [CrossRef] [PubMed]
  33. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.31(4), 480–482 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited