OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18736–18747

Towards a portable Raman spectrometer using a concave grating and a time-gated CMOS SPAD

Zhiyun Li and M. Jamal Deen  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18736-18747 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1048 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A low-cost, compact Raman spectrometer suitable for the on-line water monitoring applications is explored. A custom-designed concave grating for wavelength selection was fabricated and tested. The detection of the Raman signal is accomplished with a time-gated single photon avalanche diode (TG-SPAD). A fixed gate window of 3.5ns is designed and applied to the TG-SPAD. The temporal resolution of the SPAD was ~60ps when tested with a 7ps, 532nm solid-state laser. To test the efficiency of the gating in fluorescence signal suppression, different detection windows (3ns-0.25ns) within the 3.5ns gate window are used to measure the Raman spectra of Rhodamine B. Strong Raman peaks are resolved with this low-cost system.

© 2014 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(300.6450) Spectroscopy : Spectroscopy, Raman
(250.1345) Optoelectronics : Avalanche photodiodes (APDs)

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 27, 2014
Revised Manuscript: July 9, 2014
Manuscript Accepted: July 12, 2014
Published: July 25, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Zhiyun Li and M. Jamal Deen, "Towards a portable Raman spectrometer using a concave grating and a time-gated CMOS SPAD," Opt. Express 22, 18736-18747 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” TrAC Trends Analyt. Chem. 21(12), 869–877 (2002). [CrossRef]
  2. C. J. Strachan, T. Rades, K. C. Gordon, and J. Rantanen, “Raman spectroscopy for quantitative analysis of pharmaceutical solids,” J. Pharm. Pharmacol. 59(2), 179–192 (2007). [CrossRef] [PubMed]
  3. Z. Li, M. J. Deen, Q. Fang, and P. R. Selvaganapathy, “Design of a flat field concave-grating-based micro-Raman spectrometer for environmental applications,” Appl. Opt. 51(28), 6855–6863 (2012). [CrossRef] [PubMed]
  4. J. R. Ferraro, Introductory Raman Spectroscopy. (Academic Press, 2003).
  5. F. Knorr, Z. J. Smith, and S. Wachsmann-Hogiu, “Development of a time-gated system for Raman spectroscopy of biological samples,” Opt. Express 18(19), 20049–20058 (2010). [CrossRef] [PubMed]
  6. F. Ariese, H. Meuzelaar, M. M. Kerssens, J. B. Buijs, and C. Gooijer, “Picosecond Raman spectroscopy with a fast intensified CCD camera for depth analysis of diffusely scattering media,” Analyst (Lond.) 134(6), 1192–1197 (2009). [CrossRef] [PubMed]
  7. J. V. Sinfield, O. Colic, D. Fagerman, and C. Monwuba, “A low cost time-resolved raman spectroscopic sensing system enabling fluorescence rejection,” Appl. Spectrosc. 64(2), 201–210 (2010). [CrossRef] [PubMed]
  8. D. U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 x 32 0.13microm CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257–10269 (2010). [CrossRef] [PubMed]
  9. A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1023–1030 (2010). [CrossRef]
  10. C. Niclass, M. Soga, H. Matsubara, M. Ogawa and M. Kagami. “A 0.18µm CMOS SoC for a 100m-range 10fps 200× 96-pixel time-of-flight depth sensor,” IEEE Int Solid-State Circuits Conf Dig Tech Papers, 488–489 (Jan. 2013).
  11. Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024 x 8, 700-ps time-gated SPAD line sensor for planetary surface exploration with laser raman spectroscopy and LIBS,” IEEE J. Solid-State Circuits 49(1), 179–189 (2014). [CrossRef]
  12. I. Nissinen, J. Nissinen, A. Lansman, L. Hallman, A. Kilpela, J. Kostamovaara, M. Kogler, M. Aikio, and J. Tenhunen, “A sub-ns time-gated CMOS single photon avalanche diode detector for Raman spectroscopy,” European Solid-State Devices Research Conference (ESSDERC), 375–378 (2011) [CrossRef]
  13. J. Kostamovaara, J. Tenhunen, M. Kögler, I. Nissinen, J. Nissinen, and P. Keränen, “Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD,” Opt. Express 21(25), 31632–31645 (2013). [CrossRef] [PubMed]
  14. M. J. Deen and E. D. Thompson, “Design and simulated performance of a CARS spectrometer for dynamic temperature measurements using electronic heterodyning,” Appl. Opt. 28(7), 1409–1416 (1989). [CrossRef] [PubMed]
  15. M. M. El-Desouki, D. Palubiak, M. Deen, Q. Fang, and O. Marinov, “A novel, high-dynamic-range, high-speed, and high-sensitivity CMOS imager using time-domain single-photon counting and avalanche photodiodes,” IEEE Sens. J. 11(4), 1078–1083 (2011). [CrossRef]
  16. D. Palubiak, M. M. El-Desouki, O. Marinov, M. Deen, and Q. Fang, “High-speed, single-photon avalanche-photodiode imager for biomedical applications,” Sensors Journal, IEEE 11(10), 2401–2412 (2011). [CrossRef]
  17. N. Boens, W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007). [CrossRef] [PubMed]
  18. T. Vo-Dinh, L. R. Allain, and D. L. Stokes, “Cancer gene detection using surface‐enhanced Raman scattering (SERS),” J Raman Spectrosc 33(7), 511–516 (2002). [CrossRef]
  19. E. Vilella, O. Alonso, A. Montiel, A. Vilà, and A. Dieguez, “A low-noise time-gated single-photon detector in a HV-CMOS technology for triggered imaging,” Sens. Actuators A Phys. 201, 342–351 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited