OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18748–18756

Waveguide-mode interference lithography technique for high contrast subwavelength structures in the visible region

Kanta Kusaka, Hiroyuki Kurosawa, Seigo Ohno, Yozaburo Sakaki, Kazuyuki Nakayama, Yuto Moritake, and Teruya Ishihara  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18748-18756 (2014)
http://dx.doi.org/10.1364/OE.22.018748


View Full Text Article

Enhanced HTML    Acrobat PDF (5908 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We explore possibilities of waveguide-mode interference lithography (WMIL) technique for high contrast subwavelength structures in the visible region. Selecting an appropriate waveguide-mode, we demonstrate high contrast resist mask patterns for the first time. TM1 mode in the waveguide is shown to be useful for providing a three-dimensional structure whose cross section is checkerboard pattern. Applying our WMIL technique, we demonstrate 1D, 2D and 3D subwavelength resist patterns that are widely used for the fabrication of metamteterials in the visible region. In addition to the resist patterns, we demonstrate a resonance at 1.9 eV for a split tube structure experimentally.

© 2014 Optical Society of America

OCIS Codes
(110.5220) Imaging systems : Photolithography
(160.3918) Materials : Metamaterials

ToC Category:
Imaging Systems

History
Original Manuscript: May 21, 2014
Revised Manuscript: July 11, 2014
Manuscript Accepted: July 16, 2014
Published: July 25, 2014

Citation
Kanta Kusaka, Hiroyuki Kurosawa, Seigo Ohno, Yozaburo Sakaki, Kazuyuki Nakayama, Yuto Moritake, and Teruya Ishihara, "Waveguide-mode interference lithography technique for high contrast subwavelength structures in the visible region," Opt. Express 22, 18748-18756 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18748


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001). [CrossRef] [PubMed]
  3. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett.32(1), 53–55 (2007). [CrossRef] [PubMed]
  4. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics7(11), 907–912 (2013). [CrossRef]
  5. C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials,” Adv. Mater.17(21), 2547–2549 (2005). [CrossRef]
  6. R. J. Blaikie and S. J. McNab, “Evanescent interferometric lithography,” Appl. Opt.40(10), 1692–1698 (2001). [CrossRef] [PubMed]
  7. X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett.84(23), 4780–4782 (2004). [CrossRef]
  8. K. V. Sreekanth, J. K. Chua, and V. M. Murukeshan, “Interferometric lithography for nanoscale feature patterning: a comparative analysis between laser interference, evanescent wave interference, and surface plasmon interference,” Appl. Opt.49(35), 6710–6717 (2010). [CrossRef] [PubMed]
  9. X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett.102(3), 031103 (2013). [CrossRef]
  10. SCHOTT, “Optical glass Data Sheets”, http://www.schott.com/ .
  11. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 1991).
  12. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30(24), 3356–3358 (2005). [CrossRef] [PubMed]
  13. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics7(12), 948–957 (2013). [CrossRef]
  14. C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett.106(6), 067402 (2011). [CrossRef] [PubMed]
  15. A. Ishikawa, T. Tanaka, and S. Kawata, “Frequency dependence of the magnetic response of split-ring resonators,” JOSA B24(3), 510–515 (2007). [CrossRef]
  16. B. Q. Dong, F. Zhou, C. Wang, X. F. Chen, Z. Zhang, C. Stuart, and C. Sun, “Optical magnetism of a vertical split-ring resonator metasurface,” in The 11th International Symposium on Photonic and Electromagnetic Crystal Structures (2014), paper O-32.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited