OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18757–18769

Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry

Jie Huang, Xinwei Lan, Ming Luo, and Hai Xiao  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18757-18769 (2014)
http://dx.doi.org/10.1364/OE.22.018757


View Full Text Article

Enhanced HTML    Acrobat PDF (2853 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reports a spatially continuous distributed fiber optic sensing technique using optical carrier based microwave interferometry (OCMI), in which many optical interferometers with the same or different optical path differences are interrogated in the microwave domain and their locations can be unambiguously determined. The concept is demonstrated using cascaded weak optical reflectors along a single optical fiber, where any two arbitrary reflectors are paired to define a low-finesse Fabry-Perot interferometer. While spatially continuous (i.e., no dark zone), fully distributed strain measurement was used as an example to demonstrate the capability, the proposed concept may also be implemented on other types of waveguide or free-space interferometers and used for distributed measurement of various physical, chemical and biological quantities.

© 2014 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Sensors

History
Original Manuscript: May 15, 2014
Revised Manuscript: July 15, 2014
Manuscript Accepted: July 18, 2014
Published: July 25, 2014

Citation
Jie Huang, Xinwei Lan, Ming Luo, and Hai Xiao, "Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry," Opt. Express 22, 18757-18769 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18757


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators A Phys.82(1–3), 40–61 (2000). [CrossRef]
  2. A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry - Perot wavelength filter,” Opt. Lett.18(16), 1370–1372 (1993). [CrossRef] [PubMed]
  3. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997). [CrossRef]
  4. Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett.23(2), 70–72 (2011). [CrossRef]
  5. B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE4332, 133 (2001).
  6. J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol.3(5), 1062–1072 (1985). [CrossRef]
  7. J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett.35(5), 619–621 (2010). [CrossRef] [PubMed]
  8. F. Shen and A. Wang, “Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry-Perot interferometers,” Appl. Opt.44(25), 5206–5214 (2005). [CrossRef] [PubMed]
  9. J. Huang, L. Hua, X. Lan, T. Wei, and H. Xiao, “Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing,” Opt. Express21(15), 18152–18159 (2013). [CrossRef] [PubMed]
  10. B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem.60(1), 27–34 (1999). [CrossRef]
  11. L. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. Ang, P. Zu, W. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B Chem.169, 167–172 (2012). [CrossRef]
  12. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Appl. Opt.37(10), 1735–1740 (1998). [CrossRef] [PubMed]
  13. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol.27(9), 1142–1146 (2009). [CrossRef]
  14. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol.13(7), 1340–1348 (1995). [CrossRef]
  15. J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett.21(13), 569–570 (1985). [CrossRef]
  16. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B22(6), 1321–1324 (2005). [CrossRef]
  17. K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol.12(5), 730–736 (1994). [CrossRef]
  18. W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981). [CrossRef]
  19. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett.35(2), 259–261 (2010). [CrossRef] [PubMed]
  20. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett.36(2), 277–279 (2011). [CrossRef] [PubMed]
  21. J. Huang, X. Lan, H. Wang, L. Yuan, and H. Xiao, “Optical carrier-based microwave interferometers for sensing application,” Proc. SPIE9098, 90980H (2014).
  22. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon.1(6), 319–330 (2007). [CrossRef]
  23. J. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009). [CrossRef]
  24. K. Bisshopp and D. Drucker, “Large deflection of cantilever beams,” Q. Appl. Math.3, 273–275 (1945).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited