OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18778–18789

Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays

M. Vala and J. Homola  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18778-18789 (2014)
http://dx.doi.org/10.1364/OE.22.018778


View Full Text Article

Enhanced HTML    Acrobat PDF (6499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel nanofabrication technique based on 4-beam interference lithography is presented that enables the preparation of large macroscopic areas (>50 mm2) of perfectly periodic and defect-free two-dimensional plasmonic arrays of nanoparticles as small as 100 nm. The technique is based on a special interferometer, composed of two mirrors and a sample with photoresist that together form a right-angled corner reflector. In such an interferometer, the incoming expanded laser beam is split into four interfering beams that yield an interference pattern with rectangular symmetry. The interferometer allows setting the periods of the array from about 220 nm to 1500 nm in both directions independently through the rotation of the corner-reflector assembly around horizontal and vertical axes perpendicular to the direction of the incident beam. Using a theoretical model, the implementation of the four-beam interference lithography is discussed in terms of the optimum contrast as well as attainable periods of the array. Several examples of plasmonic arrays (on either glass or polymer substrate layers) fabricated by this technique are presented.

© 2014 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(220.4610) Optical design and fabrication : Optical fabrication
(260.3160) Physical optics : Interference
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Laser Microfabrication

History
Original Manuscript: May 19, 2014
Revised Manuscript: July 10, 2014
Manuscript Accepted: July 13, 2014
Published: July 25, 2014

Citation
M. Vala and J. Homola, "Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays," Opt. Express 22, 18778-18789 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18778


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light 2nd Edition, 1–286 (Princeton University Press, 2008).
  2. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, 1–200 (Springer, 2010).
  3. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008). [CrossRef] [PubMed]
  4. M. L. Jin, V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, “High-Density Periodic Arrays of Self-Aligned Subwavelength Nanopyramids for Surface-Enhanced Raman Spectroscopy,” J. Phys. Chem. C114(50), 21953–21959 (2010). [CrossRef]
  5. S. R. J. Brueck, “Optical and interferometric lithography - Nanotechnology enablers,” P IEEE93(10), 1704–1721 (2005). [CrossRef]
  6. J. H. Seo, J. H. Park, S. I. Kim, B. J. Park, Z. Q. Ma, J. Choi, and B. K. Ju, “Nanopatterning by Laser Interference Lithography: Applications to Optical Devices,” J. Nanosci. Nanotechnol.14(2), 1521–1532 (2014). [CrossRef] [PubMed]
  7. X. Y. Zhang, A. V. Whitney, J. Zhao, E. M. Hicks, and R. P. Van Duyne, “Advances in contemporary nanosphere lithographic techniques,” J. Nanosci. Nanotechnol.6(7), 1920–1934 (2006). [CrossRef] [PubMed]
  8. L. Z. Cai, X. L. Yang, and Y. R. Wang, “Interference of three noncoplanar beams: patterns, contrast and polarization optimization,” J. Mod. Opt.49(10), 1663–1672 (2002). [CrossRef]
  9. L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett.27(11), 900–902 (2002). [CrossRef] [PubMed]
  10. J. de Boor, N. Geyer, U. Gösele, and V. Schmidt, “Three-beam interference lithography: upgrading a Lloyd’s interferometer for single-exposure hexagonal patterning,” Opt. Lett.34(12), 1783–1785 (2009). [CrossRef] [PubMed]
  11. L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett.86(24), 241102 (2005). [CrossRef]
  12. A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B15(6), 2439–2443 (1997). [CrossRef]
  13. A. Fernandez and D. W. Phillion, “Effects of phase shifts on four-beam interference patterns,” Appl. Opt.37(3), 473–478 (1998). [CrossRef] [PubMed]
  14. M. Ellman, A. Rodriguez, N. Perez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: Effect of laser fluence and polarisation,” Appl. Surf. Sci.255(10), 5537–5541 (2009). [CrossRef]
  15. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express13(23), 9605–9611 (2005). [CrossRef] [PubMed]
  16. X. Zhang, M. Theuring, Q. Song, W. D. Mao, M. Begliarbekov, and S. Strauf, “Holographic Control of Motive Shape in Plasmonic Nanogap Arrays,” Nano Lett.11(7), 2715–2719 (2011). [CrossRef] [PubMed]
  17. X. Zhang and S. Strauf, “Formation of triplet and quadruplet plasmonic nanoarray templates by holographic lithography,” Appl. Phys. Lett.102, 093110 (2013).
  18. W. D. Mao, G. Q. Liang, H. Zou, and H. Z. Wang, “Controllable fabrication of two-dimensional compound photonic crystals by single-exposure holographic lithography,” Opt. Lett.31(11), 1708–1710 (2006). [CrossRef] [PubMed]
  19. A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng.86(4-6), 937–940 (2009). [CrossRef]
  20. H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Four-wave EUV interference lithography,” Microelectron. Eng.61–62, 77–82 (2002). [CrossRef]
  21. H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Multiple-beam interference lithography with electron beam written gratings,” J. Vac. Sci. Technol. B20(6), 2844–2848 (2002). [CrossRef]
  22. J. L. Stay and T. K. Gaylord, “Contrast in four-beam-interference lithography,” Opt. Lett.33(13), 1434–1436 (2008). [CrossRef] [PubMed]
  23. B. Auguie, X. M. Bendana, W. L. Barnes, and F. J. G. de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited