OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18790–18799

Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz

Johannes Finger and Martin Reininghaus  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18790-18799 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1770 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the effect of pulse to pulse interactions during percussion drilling of steel using high power ps-laser radiation with repetition rates of up to 10 MHz and high average powers up to 80 W. The ablation rate per pulse is measured as a function of the pulse repetition rate for four fluences ranging from 500 mJ/cm2 up to 1500 mJ/cm2. For every investigated fluence an abrupt increase of the ablation rate per pulse is observed at a distinctive repetition rate. The onset repetition rate for this effect is strongly dependent on the applied pulse fluence. The origin of the increase of the ablation rate is attributed to the emergence of a melt based ablation processes, as Laser Scanning Microscopy (LSM) images show the occurrence of melt ejected material surrounding the drilling holes. A semi empirical model based on classical heat conduction including heat accumulation as well as pulse-particle interactions is applied to enable quantitative conclusions on the origin of the observed data. In agreement with previous studies, the acquired data confirm the relevance of these two effects for the fundamental description of materials processing with ultra-short pulsed laser radiation at high repetition rates and high average power.

© 2014 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Laser Microfabrication

Original Manuscript: April 24, 2014
Revised Manuscript: June 19, 2014
Manuscript Accepted: June 26, 2014
Published: July 25, 2014

Johannes Finger and Martin Reininghaus, "Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz," Opt. Express 22, 18790-18799 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996). [CrossRef]
  2. C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun.129(1-2), 134–142 (1996). [CrossRef]
  3. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14(10), 2716 (1997). [CrossRef]
  4. A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett.34(21), 3304–3306 (2009). [CrossRef] [PubMed]
  5. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express16(12), 8958–8968 (2008). [CrossRef] [PubMed]
  6. P. S. Banks, M. D. Feit, A. M. Rubenchik, B. C. Stuart, and M. D. Perry, “Material effects in ultra-short pulse laser drilling of metals,” Appl. Phys., A Mater. Sci. Process.69(7), S377–S380 (1999). [CrossRef]
  7. S. Döring, S. Richter, S. Nolte, and A. Tünnermann, “In situ imaging of hole shape evolution in ultrashort pulse laser drilling,” Opt. Express18(19), 20395–20400 (2010). [CrossRef] [PubMed]
  8. G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys. A77, 307–310 (2003).
  9. G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci.208–209, 181–188 (2003). [CrossRef]
  10. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett.35(2), 94–96 (2010). [CrossRef] [PubMed]
  11. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron.12(2), 233–244 (2006). [CrossRef]
  12. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-Amplifier,” Opt. Express17(15), 12230–12245 (2009). [CrossRef] [PubMed]
  13. B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P.-E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE8243, 824307 (2012). [CrossRef]
  14. D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE5339, 49–63 (2004). [CrossRef]
  15. J. Finger, M. Weinand, and D. Wortmann, “Investigations on processing of carbon fiber reinforced plastics using ultrashort pulsed laser radiation with high average power,” Proceedings of ICALEO, #1905 (2013).
  16. J. Schille, R. Ebert, U. Loeschner, P. Scully, N. Goddard, and H. Exner, “High repetition rate femtosecond laser processing of metals,” Proc. SPIE7589, 758915 (2010). [CrossRef]
  17. A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process.82(2), 357–362 (2006). [CrossRef]
  18. A. Y. Vorobyev and C. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. Express14(26), 13113–13119 (2006). [CrossRef] [PubMed]
  19. N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett.99(16), 167602 (2007). [CrossRef] [PubMed]
  20. I. Mingareev and A. Horn, “Time-resolved investigations of plasma and melt ejections in metals by pump-probe shadowgrpahy,” Appl. Phys., A Mater. Sci. Process.92(4), 917–920 (2008). [CrossRef]
  21. R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, and S. S. Mao, “Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process.69(7), S887–S894 (1999). [CrossRef]
  22. C. Y. Liu, X. L. Mao, R. Greif, and R. E. Russo, “Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation,” J. Phys. Conf. Ser.59, 338–342 (2007). [CrossRef]
  23. S. H. Jeong, R. Greif, and R. E. Russo, “Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples,” J. Phys. D Appl. Phys.32(19), 2578–2585 (1999). [CrossRef]
  24. J. König, S. Nolte, and A. Tünnermann, “Plasma evolution during metal ablation with ultrashort laser pulses,” Opt. Express13(26), 10597–10607 (2005). [CrossRef] [PubMed]
  25. L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion†,” J. Phys. Chem. C113(27), 11892–11906 (2009). [CrossRef]
  26. A. Miotello and R. Kelly, “Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature,” Appl. Phys., A Mater. Sci. Process.69(S1), S67–S73 (1999). [CrossRef]
  27. F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.79(4-6), 879–881 (2004). [CrossRef]
  28. C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express20(22), 24864–24872 (2012). [CrossRef] [PubMed]
  29. R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci.249(1-4), 322–331 (2005). [CrossRef]
  30. H. Treusch, P. Schäfer, and H. Junge, Abtragen, Bohren und Trennen mit Festkörperlasern (VDI-Technologiezentrum Physikalische Technologien, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited