OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18807–18817

Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber

Xuehao Hu, Chi-Fung Jeff Pun, Hwa-Yaw Tam, Patrice Mégret, and Christophe Caucheteur  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18807-18817 (2014)
http://dx.doi.org/10.1364/OE.22.018807


View Full Text Article

Enhanced HTML    Acrobat PDF (2949 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

During the past few years, a strong progress has been made in the photo-writing of fiber Bragg gratings (FBGs) in polymer optical fibers (POFs), animated by the constant wish to enhance the grating reflectivity and improve the sensing performances. In this paper, we report the photo-inscription of highly reflective gratings in step-index POFs, obtained thanks to a slight etching of the cladding. We demonstrate that a cladding diameter decrease of ~12% is an ideal trade-off to produce highly reflective gratings with enhanced axial strain sensitivity, while keeping almost intact their mechanical resistance. For this, we make use of Trans-4-stilbenemethanol-doped photosensitive step-index poly(methyl methacrylate) (PMMA) POFs. FBGs are inscribed at ~1550 nm by the scanning phase mask technique in POFs of different external diameters. Reflectivity reaching 97% is achieved for 6 mm long FBGs, compared to 25% for non-etched POFs. We also report that a cladding decrease enhances the FBG axial tension while keeping unchanged temperature and surrounding refractive index sensitivities. Finally and for the first time, a measurement is conducted in transmission with polarized light, showing that a photo-induced birefringence of 7 × 10−6 is generated (one order of magnitude higher than the intrinsic fiber birefringence), which is similar to the one generated in silica fiber using ultra-violet laser.

© 2014 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics

History
Original Manuscript: April 21, 2014
Revised Manuscript: July 9, 2014
Manuscript Accepted: July 13, 2014
Published: July 25, 2014

Citation
Xuehao Hu, Chi-Fung Jeff Pun, Hwa-Yaw Tam, Patrice Mégret, and Christophe Caucheteur, "Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber," Opt. Express 22, 18807-18817 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18807


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett.11(3), 352–354 (1999). [CrossRef]
  2. A. Stefani, M. Stecher, G. E. Town, and O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett.24(13), 1148–1150 (2012). [CrossRef]
  3. D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Proc. SPIE6830, 683002 (2008). [CrossRef]
  4. G. Statkiewicz-Barabach, K. Tarnowski, D. Kowal, P. Mergo, and W. Urbanczyk, “Fabrication of multiple Bragg gratings in microstructured polymer fibers using a phase mask with several diffraction orders,” Opt. Express21(7), 8521–8534 (2013). [CrossRef] [PubMed]
  5. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett.30(24), 3296–3298 (2005). [CrossRef] [PubMed]
  6. X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol.21(9), 094005 (2010). [CrossRef]
  7. C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Inscription of narrow bandwidth Bragg gratings in polymer optical fibers,” J. Opt.15(7), 075404 (2013). [CrossRef]
  8. W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett.24(5), 401–403 (2012). [CrossRef]
  9. K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express15(14), 8844–8850 (2007). [CrossRef] [PubMed]
  10. H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001). [CrossRef]
  11. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011). [CrossRef]
  12. Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photon. Technol. Lett.22(21), 1562–1564 (2010). [CrossRef]
  13. X. Hu, D. Kinet, K. Chah, P. Mégret, and C. Caucheteur, “Bragg gratings inscription at 1550 nm in photosensitive step-index polymer optical fiber,” Proc. SPIE8794, 87942Q (2013). [CrossRef]
  14. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012). [CrossRef]
  15. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011). [CrossRef] [PubMed]
  16. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express21(4), 4758–4765 (2013). [CrossRef] [PubMed]
  17. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” IEEE Electron. Lett.47(4), 271–272 (2011). [CrossRef]
  18. Z. F. Zhang and X. M. Tao, “Synergetic effects of humidity and temperature on PMMA based fiber Bragg gratings,” J. Lightwave Technol.30(6), 841–845 (2012). [CrossRef]
  19. W. Zhang, D. Webb, and G. Peng, “Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor,” Opt. Lett.37(8), 1370–1372 (2012). [CrossRef] [PubMed]
  20. C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE7503, 750380 (2009). [CrossRef]
  21. G. Rajan, M. Y. M. Noor, N. H. Lovell, E. Ambikaizrajah, G. Farrell, and G. D. Peng, “Polymer micro-fiber Bragg grating,” Opt. Lett.38(17), 3359–3362 (2013). [CrossRef] [PubMed]
  22. G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etchedsinglemode polymer fiber Bragg grating,” Sens. Actuators A Phys.203, 107–111 (2013). [CrossRef]
  23. G. Rajan, B. Liu, Y. Luo, E. Ambikairajah, and G. D. Peng, “High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings,” IEEE Sens. J.13(5), 1794–1800 (2013). [CrossRef]
  24. D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett.38(19), 3769–3772 (2013). [CrossRef] [PubMed]
  25. H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun.220(4), 337–343 (2003). [CrossRef]
  26. H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel growth behaviors of fiber Bragg gratings in polymer optical fiber under UV irradiation with low power,” IEEE Photon. Technol. Lett.16(1), 159–161 (2004). [CrossRef]
  27. F. Lhommé, C. Caucheteur, K. Chah, M. Blondel, and P. Mégret, “Synthesis of fiber Bragg grating parameters from experimental reflectivity: a simplex approach and its application to the determination of temperature-dependent properties,” Appl. Opt.44(4), 493–497 (2005). [CrossRef] [PubMed]
  28. A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett.23(10), 660–662 (2011). [CrossRef]
  29. C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett.19(13), 966–968 (2007). [CrossRef]
  30. C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Influence of the grating parameters on the polarization properties of fiber Bragg gratings,” J. Lightwave Technol.27(8), 1000–1010 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited