OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18818–18823

All-optical electromagnetically induced transparency using one-dimensional coupled microcavities

Ahmer Naweed, David Goldberg, and Vinod M. Menon  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18818-18823 (2014)
http://dx.doi.org/10.1364/OE.22.018818


View Full Text Article

Enhanced HTML    Acrobat PDF (1593 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first experimental realization of all-optical electromagnetically induced transparency (EIT) via a pair of coherently interacting SiO2 microcavities in a one-dimensional SiO2/Si3N4 photonic crystal consisting of a distributed Bragg reflector (DBR). The electromagnetic interactions between the coupled microcavities (CMCs), which possess distinct Q-factors, are controlled by varying the number of embedded SiO2/Si3N4 bilayers in the coupling DBR. In case of weak microcavity interactions, the reflectivity spectrum reveals an all-optical EIT resonance which splits into an Autler-Townes-like resonance under condition of strong microcavity coupling. Our results open up the way for implementing optical analogs of quantum coherence in much simpler one-dimensional structures. We also discuss potential applications of CMCs.

© 2014 Optical Society of America

OCIS Codes
(230.4555) Optical devices : Coupled resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optoelectronics

History
Original Manuscript: March 28, 2014
Revised Manuscript: June 10, 2014
Manuscript Accepted: June 10, 2014
Published: July 25, 2014

Citation
Ahmer Naweed, David Goldberg, and Vinod M. Menon, "All-optical electromagnetically induced transparency using one-dimensional coupled microcavities," Opt. Express 22, 18818-18823 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18818


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003). [CrossRef] [PubMed]
  2. A. Naweed, G. Farca, S. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A71(4), 043804 (2005). [CrossRef]
  3. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006). [CrossRef] [PubMed]
  4. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett.98(21), 213904 (2007). [CrossRef] [PubMed]
  5. K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991). [CrossRef] [PubMed]
  6. D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, “Optimization of an optical filter with a square-shaped passband based on coupled microcavities,” J. Mod. Opt.51(3), 437–446 (2004). [CrossRef]
  7. S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B65(16), 165208 (2002). [CrossRef]
  8. D. D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004). [CrossRef]
  9. M. Bayindir, S. Tanriseven, A. Aydinli, and E. Ozbay, “Strong enhancement of spontaneous emission in amorphous-silicon-nitride photonic crystal based coupled-microcavity structures,” Appl. Phys., A Mater. Sci. Process.73(1), 125–127 (2001). [CrossRef]
  10. A. J. Campillo, J. D. Eversole, and H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett.67(4), 437–440 (1991). [CrossRef] [PubMed]
  11. D. Gerace, H. E. Türeci, A. Imamoglu, V. Giovannetti, and R. Fazio, “The quantum-optical Josephson interferometer,” Nat. Phys.5(4), 281–284 (2009). [CrossRef]
  12. C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lemaître, J. Bloch, P. Roussignol, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature440(7086), 904–907 (2006). [CrossRef] [PubMed]
  13. S. Y. Hu, E. R. Hegblom, and L. A. Coldren, “Coupled-cavity resonant-photodetectors for high-performance wavelength demultiplexing applications,” Appl. Phys. Lett.71(2), 178–180 (1997). [CrossRef]
  14. P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett.71(7), 864–866 (1997). [CrossRef]
  15. C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B104(3), 503–511 (2011). [CrossRef]
  16. X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett.102(17), 173902 (2009). [CrossRef] [PubMed]
  17. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev.100(2), 703–722 (1955). [CrossRef]
  18. V. Wong, PhD Thesis, University of Rochester (2004).
  19. M. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A59(6), 4732–4735 (1999). [CrossRef]
  20. M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett.88(24), 241103 (2006). [CrossRef]
  21. Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett.32(8), 915–917 (2007). [CrossRef] [PubMed]
  22. Y. Zhang, H. Tian, X. Zhang, N. Wang, J. Zhang, H. Wu, and P. Yuan, “Experimental evidence of enhanced rotation sensing in a slow-light structure,” Opt. Lett.35(5), 691–693 (2010). [CrossRef] [PubMed]
  23. O. Deparis and O. El Daif, “Optimization of slow light one-dimensional Bragg structures for photocurrent enhancement in solar cells,” Opt. Lett.37(20), 4230–4232 (2012). [CrossRef] [PubMed]
  24. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett.33(2), 147–149 (2008). [CrossRef] [PubMed]
  25. J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett.31(9), 1235–1237 (2006). [CrossRef] [PubMed]
  26. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett.32(5), 533–535 (2007). [CrossRef] [PubMed]
  27. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987). [CrossRef]
  28. N. Miladinovic, F. Hasan, N. Chisholm, I. E. Linnington, E. A. Hinds, and D. H. J. O’Dell, “Adiabatic transfer of light in a double cavity and the optical Landau-Zener problem,” Phys. Rev. A84(4), 043822 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited