OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18824–18832

Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion

Mariusz Klimczak, Bartłomiej Siwicki, Piotr Skibiński, Dariusz Pysz, Ryszard Stępień, Alexander Heidt, Czesław Radzewicz, and Ryszard Buczyński  »View Author Affiliations

Optics Express, Vol. 22, Issue 15, pp. 18824-18832 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2315 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Supercontinuum spanning over an octave from 900 – 2300 nm is reported in an all-normal dispersion, soft glass photonic crystal fiber. The all-solid microstructured fiber was engineered to achieve a normal dispersion profile flattened to within −50 to −30 ps/nm/km in the wavelength range of 1100 – 2700 nm. Under pumping with 75 fs pulses centered at 1550 nm, the recorded spectral flatness is 7 dB in the 930 – 2170 nm range, and significantly less if cladding modes present in the uncoated photonic crystal fiber are removed. To the best of our knowledge, this is the first report of an octave-spanning, all-normal dispersion supercontinuum generation in a non-silica microstructured fiber, where the spectrum long-wavelength edge is red-shifted to as far as 2300 nm. This is also an important step in moving the concept of ultrafast coherent supercontinuum generation in all-normal dispersion fibers further towards the mid-infrared spectral region.

© 2014 Optical Society of America

OCIS Codes
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Fiber Optics

Original Manuscript: May 27, 2014
Revised Manuscript: June 30, 2014
Manuscript Accepted: July 1, 2014
Published: July 25, 2014

Mariusz Klimczak, Bartłomiej Siwicki, Piotr Skibiński, Dariusz Pysz, Ryszard Stępień, Alexander Heidt, Czesław Radzewicz, and Ryszard Buczyński, "Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion," Opt. Express 22, 18824-18832 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  2. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008). [CrossRef] [PubMed]
  3. A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013). [CrossRef] [PubMed]
  4. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970). [CrossRef]
  5. C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976). [CrossRef]
  6. C. Lin and W. G. French, “Wideband near-I.R. continuum (0.7-2.1 μm) generated in low-loss optical fibres,” Electron. Lett. 14(25), 822–823 (1978). [CrossRef]
  7. K. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42(17), 989–991 (2006). [CrossRef]
  8. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011). [CrossRef] [PubMed]
  9. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24(8), 1786–1792 (2007). [CrossRef]
  10. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking or coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008). [CrossRef]
  11. X. Feng, T. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11(18), 2225–2230 (2003). [CrossRef] [PubMed]
  12. T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39(8), 2342–2345 (2014). [CrossRef] [PubMed]
  13. G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014). [CrossRef]
  14. R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014). [CrossRef]
  15. I. Kubat, C. S. Agger, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5 um in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. B 30(10), 2743–2757 (2013). [CrossRef]
  16. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010). [CrossRef]
  17. P. Skibiński and C. Radzewicz, “Bad pixel correction method for locally analytic images: application to infrared spectroscopy,” J. Electron. Imaging 22(4), 043020 (2013). [CrossRef]
  18. J. C. Travers, M. H. Frosz, and J. M. Dudley, Nonlinear Fiber Optics Overview, Chap. 3 in Supercontinuum Generation in Optical Fibers, J. M. Dudley and R. Taylor (Cambridge University Press 2010)
  19. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18(14), 14778–14787 (2010). [CrossRef] [PubMed]
  20. U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49(1), 63–65 (2013). [CrossRef]
  21. U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20(3), 2851–2857 (2012). [CrossRef] [PubMed]
  22. S. Dupont, P. M. Moselund, L. Leick, J. Ramsay, and S. R. Keiding, “Up-conversion of a megahertz mid-IR supercontinuum,” J. Opt. Soc. Am. B 30(10), 2570–2575 (2013). [CrossRef]
  23. I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014). [CrossRef] [PubMed]
  24. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR Microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited