OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 18833–18842

Optimal detection angle in sub-diffraction resolution photothermal microscopy: application for high sensitivity imaging of biological tissues

Jun Miyazaki, Hiromichi Tsurui, Koshi Kawasumi, and Takayoshi Kobayashi  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 18833-18842 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (925 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We evaluated the optimal detection angle for maximizing the signal to noise ratio (SNR) in sub-diffraction resolution photothermal microscopy. The angular dependent photothermal signal was calculated based on scattering theory using the temporally modulated Yukawa potential, and its detection angle and modulation frequency dependencies were analyzed. We verified the theoretical findings by imaging gold nanoparticles using laser diode based photothermal microscopy with balanced detection scheme. High-sensitivity (SNR ~40) photothermal biological imaging of a mouse brain was also demonstrated.

© 2014 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(170.5810) Medical optics and biotechnology : Scanning microscopy
(350.5340) Other areas of optics : Photothermal effects
(290.5825) Scattering : Scattering theory

ToC Category:

Original Manuscript: June 10, 2014
Revised Manuscript: July 16, 2014
Manuscript Accepted: July 20, 2014
Published: July 28, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Jun Miyazaki, Hiromichi Tsurui, Koshi Kawasumi, and Takayoshi Kobayashi, "Optimal detection angle in sub-diffraction resolution photothermal microscopy: application for high sensitivity imaging of biological tissues," Opt. Express 22, 18833-18842 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002). [CrossRef] [PubMed]
  2. S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004). [CrossRef] [PubMed]
  3. A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330(6002), 353–356 (2010). [CrossRef] [PubMed]
  4. C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis, “A highly specific gold nanoprobe for live-cell single-molecule imaging,” Nano Lett. 13(4), 1489–1494 (2013). [PubMed]
  5. V. Octeau, L. Cognet, L. Duchesne, D. Lasne, N. Schaeffer, D. G. Fernig, and B. Lounis, “Photothermal absorption correlation spectroscopy,” ACS Nano 3(2), 345–350 (2009). [CrossRef] [PubMed]
  6. P. M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113(27), 11451–11457 (2009). [CrossRef]
  7. R. Radünz, D. Rings, K. Kroy, and F. Cichos, “Hot brownian particles and photothermal correlation spectroscopy,” J. Phys. Chem. A 113(9), 1674–1677 (2009). [CrossRef] [PubMed]
  8. C. Leduc, J. M. Jung, R. P. Carney, F. Stellacci, and B. Lounis, “Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging,” ACS Nano 5(4), 2587–2592 (2011). [CrossRef] [PubMed]
  9. S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010). [CrossRef]
  10. D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006). [CrossRef] [PubMed]
  11. L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003). [CrossRef] [PubMed]
  12. P. Vermeulen, L. Cognet, and B. Lounis, “Photothermal microscopy: optical detection of small absorbers in scattering environments,” J. Microsc. 254(3), 115–121 (2014). [CrossRef] [PubMed]
  13. L. Wei and W. Min, “Pump-probe optical microscopy for imaging nonfluorescent chromophores,” Anal. Bioanal. Chem. 403(8), 2197–2202 (2012). [CrossRef] [PubMed]
  14. J. Miyazaki, H. Tsurui, A. Hayashi-Takagi, H. Kasai, and T. Kobayashi, “Sub-diffraction resolution pump-probe microscopy with shot-noise limited sensitivity using laser diodes,” Opt. Express 22(8), 9024–9032 (2014). [CrossRef] [PubMed]
  15. W.-S. Chang and S. Link, “Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals,” J. Phys. Chem. Lett. 3(10), 1393–1399 (2012). [CrossRef]
  16. A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale thermotropic phase transitions enhancing photothermal microscopy signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012). [CrossRef]
  17. S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006). [CrossRef]
  18. M. Selmke, M. Braun, and F. Cichos, “Photothermal single-particle microscopy: detection of a nanolens,” ACS Nano 6(3), 2741–2749 (2012). [CrossRef] [PubMed]
  19. M. Selmke, M. Braun, and F. Cichos, “Gaussian beam photothermal single particle microscopy,” J. Opt. Soc. Am. A 29(10), 2237–2241 (2012). [CrossRef] [PubMed]
  20. M. Selmke, M. Braun, and F. Cichos, “Nano-lens diffraction around a single heated nano particle,” Opt. Express 20(7), 8055–8070 (2012). [CrossRef] [PubMed]
  21. M. Selmke and F. Cichos, “Photothermal single particle Rutherford scattering microscopy,” Phys. Rev. Lett. 110(10), 103901 (2013). [CrossRef] [PubMed]
  22. M. Selmke and F. Cichos, “Photonic Rutherford scattering: A classical and quantum mechanical analogy in ray and wave optics,” Am. J. Phys. 81(6), 405 (2013). [CrossRef]
  23. H. Yukawa, “On the interaction of elementary particles. I,” Proc. Phys.-Math. Soc. Jpn. 17, 48–57 (1935).
  24. K. Gottfried and T.-M. Yan, Quantum Mechanics: Fundamentals, Second Edition (Springer, 2003).
  25. J. Miyazaki, K. Kawasumi, and T. Kobayashi, “Resolution improvement in laser diodes-based pump-probe microscopy with an annular pupil filter,” Opt. Lett. 39(14), 4219–4222 (2014). [CrossRef]
  26. K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(9A), 5316–5322 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited