OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 18843–18848

Single CdTe microwire photodetectors grown by close-spaced sublimation method

Gwangseok Yang, Byung-Jae Kim, Donghwan Kim, and Jihyun Kim  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 18843-18848 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (605 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate single CdTe microwire field-effect transistors (FETs) that are highly sensitive to ultraviolet (UV) light. Dense CdTe microwires were catalytically grown using a close-spaced sublimation system. Structural, morphological and transport properties in conjunction with the optoelectronic properties were systemically investigated. CdTe microwire FETs exhibited p-type behaviors with field-effect mobilities up to 1.1 × 10−3 cm2 V−1 s−1. Optoelectronic properties of our CdTe microwire FETs were studied under dark and UV-illumination conditions, where photoresponse was highly dependent on the back-gate bias conditions. Our CdTe microwire FET-based photodetectors are promising for high-performance micro-optoelectronic applications.

© 2014 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(160.6000) Materials : Semiconductor materials
(350.6050) Other areas of optics : Solar energy

ToC Category:

Original Manuscript: June 12, 2014
Manuscript Accepted: July 10, 2014
Published: July 28, 2014

Gwangseok Yang, Byung-Jae Kim, Donghwan Kim, and Jihyun Kim, "Single CdTe microwire photodetectors grown by close-spaced sublimation method," Opt. Express 22, 18843-18848 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005). [CrossRef] [PubMed]
  2. H. Park, B.-J. Kim, and J. Kim, “Electroluminescence from InGaN/GaN multi-quantum-wells nanorods light-emitting diodes positioned by non-uniform electric fields,” Opt. Express 20(23), 25249–25254 (2012). [CrossRef] [PubMed]
  3. M.-W. Shao, Y.-Y. Shan, N.-B. Wong, and S.-T. Lee, “Silicon nanowire sensors for bioanalytical applications: Glucose and hydrogen peroxide detection,” Adv. Funct. Mater. 15(9), 1478–1482 (2005). [CrossRef]
  4. Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, and Z. L. Wang, “Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect,” ACS Nano 4(10), 6285–6291 (2010). [CrossRef] [PubMed]
  5. N. S. Ramgir, Y. Yang, and M. Zacharias, “Nanowire-based sensors,” Small 6(16), 1705–1722 (2010). [CrossRef] [PubMed]
  6. E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire solar cells,” Annu. Rev. Mater. Res. 41(1), 269–295 (2011). [CrossRef]
  7. J. Bae, H. Kim, X.-M. Zhang, C. H. Dang, Y. Zhang, Y. J. Choi, A. Nurmikko, and Z. L. Wang, “Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters,” Nanotechnology 21(9), 095502 (2010). [CrossRef] [PubMed]
  8. A. Bugallo, M. Tchernycheva, G. Jacopin, L. Rigutti, F. H. Julien, S.-T. Chou, Y.-T. Lin, P.-H. Tseng, and L.-W. Tu, “Visible-blind photodetector based on p-i-n junction GaN nanowire ensembles,” Nanotechnology 21(31), 315201 (2010). [CrossRef] [PubMed]
  9. P. Sinha, “Life cycle materials and water management for CdTe photovoltaics,” Sol. Energy Mater. Sol. Cells 119, 271–275 (2013). [CrossRef]
  10. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014). [CrossRef]
  11. X. Xie, S.-Y. Kwok, Z. Lu, Y. Liu, Y. Cao, L. Luo, J. A. Zapien, I. Bello, C.-S. Lee, S.-T. Lee, and W. Zhang, “Visible-NIR photodetectors based on CdTe nanoribbons,” Nanoscale 4(9), 2914–2919 (2012). [CrossRef] [PubMed]
  12. M. C. Kum, H. Jung, N. Chartuprayoon, W. Chen, A. Mulchandani, and N. V. Myung, “Tuning electrical and optoelectronic properties of single cadmium telluride nanoribbon,” J. Phys. Chem. C 116(16), 9202–9208 (2012). [CrossRef]
  13. H. Park, G. Yang, S. Chun, D. Kim, and J. Kim, “CdTe microwire-based ultraviolet photodetectors aligned by a non-uniform electric field,” Appl. Phys. Lett. 103(5), 051906 (2013). [CrossRef]
  14. B. L. Williams, A. A. Taylor, B. G. Mendis, L. Phillips, L. Bowen, J. D. Major, and K. Durose, “Core-shell ITO/ZnO/CdS/CdTe nanowire solar cells,” Appl. Phys. Lett. 104(5), 053907 (2014). [CrossRef]
  15. G. Yang, Y. Jung, S. Chun, D. Kim, and J. Kim, “Catalytic growth of CdTe nanowires by closed space sublimation method,” Thin Solid Films 546, 375–378 (2013). [CrossRef]
  16. K. Nagashima, T. Yanagida, K. Oka, H. Tanaka, and T. Kawai, “Mechanism and control of sidewall growth and catalyst diffusion on oxide nanowire vapor-liquid-solid growth,” Appl. Phys. Lett. 93(15), 153103 (2008). [CrossRef]
  17. K. Durose, P. R. Edwards, and D. P. Halliday, “Materials aspects of CdTe/CdS solar cells,” J. Cryst. Growth 197(3), 733–742 (1999). [CrossRef]
  18. A. McEvoy, T. Markvart, and L. Castañer, Solar Cells: Materials, Manufacture and Operation, in CdTe Thin-Film PV Modules 2nd ed. (Elsevier, 2013).
  19. D. K. Schroder, Semiconductor Material and Device Characterization 2nd ed. (Wiley, 1998).
  20. M. Takahashi, K. Uosaki, H. Kita, and S. Yamaguchi, “Resistivity, carrier concentration, and carrier mobility of electrochemically deposited CdTe films,” J. Appl. Phys. 60(6), 2046–2049 (1986). [CrossRef]
  21. E. Ramayya, D. Vasileska, S. M. Goodnick, and I. Knezevic, “Electron transport in Si nanowire,” J. Phys. Conf. Ser. 38, 126–129 (2006). [CrossRef]
  22. A. K. Buin, A. Verma, A. Svizhenko, and M. P. Anantram, “Significant enhancement of hole mobility in [110] silicon nanowires compared to electrons and bulk silicon,” Nano Lett. 8(2), 760–765 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited