OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 18870–18880

Compressive wavefront sensing with weak values

Gregory A. Howland, Daniel J. Lum, and John C. Howell  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 18870-18880 (2014)
http://dx.doi.org/10.1364/OE.22.018870


View Full Text Article

Enhanced HTML    Acrobat PDF (3979 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a wavefront sensor that unites weak measurement and the compressive-sensing, single-pixel camera. Using a high-resolution spatial light modulator (SLM) as a variable waveplate, we weakly couple an optical field’s transverse-position and polarization degrees of freedom. By placing random, binary patterns on the SLM, polarization serves as a meter for directly measuring random projections of the wavefront’s real and imaginary components. Compressive-sensing optimization techniques can then recover the wavefront. We acquire high quality, 256 × 256 pixel images of the wavefront from only 10,000 projections. Photon-counting detectors give sub-picowatt sensitivity.

© 2014 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(270.0270) Quantum optics : Quantum optics
(110.1758) Imaging systems : Computational imaging

ToC Category:
Imaging Systems

History
Original Manuscript: May 14, 2014
Revised Manuscript: July 15, 2014
Manuscript Accepted: July 20, 2014
Published: July 28, 2014

Citation
Gregory A. Howland, Daniel J. Lum, and John C. Howell, "Compressive wavefront sensing with weak values," Opt. Express 22, 18870-18880 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-18870


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Roddier, Adaptive Optics in Astronomy (Cambridge university press, 1999). [CrossRef]
  2. L. N. Thibos and X. Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optometry Vision Sci.76, 817–825 (1999). [CrossRef]
  3. M. J. Booth, “Adaptive optics in microscopy,” Philos. T. R. Soc. A365, 2829–2843 (2007). [CrossRef]
  4. M. Levoy, “Light fields and computational imaging,” IEEE Comput.39, 46–55 (2006). [CrossRef]
  5. R. Tyson, Principles of Adaptive Optics (CRC Press, 2010). [CrossRef]
  6. J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wave-function,” Nature (London)474, 188–191 (2011). [CrossRef]
  7. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg.17, S573–S577 (2001). [PubMed]
  8. R. Lane and M. Tallon, “Wave-front reconstruction using a Shack-Hartmann sensor,” Appl. Opt.31, 6902–6908 (1992). [CrossRef] [PubMed]
  9. S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science332, 1170–1173 (2011). [CrossRef] [PubMed]
  10. J. Z. Salvail, M. Agnew, A. S. Johnson, E. Bolduc, J. Leach, and R. W. Boyd, “Full characterization of polarization states of light via direct measurement,” Nat. Photonics7, 316–321 (2013). [CrossRef]
  11. D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.
  12. R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag.83, 914730 (2008).
  13. Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett.60, 1351 (1988). [CrossRef] [PubMed]
  14. O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science319, 787–790 (2008). [CrossRef] [PubMed]
  15. P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive beam deflection measurement via interferometric weak value amplification,” Phys. Rev. Lett.102, 173601 (2009). [CrossRef] [PubMed]
  16. A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: When less is more,” Phys. Rev. X4, 011031 (2014).
  17. J. Lundeen and A. Steinberg, “Experimental joint weak measurement on a photon pair as a probe of hardys paradox,” Phys. Rev. Lett.102, 020404 (2009). [CrossRef]
  18. J. Dressel and A. Jordan, “Significance of the imaginary part of the weak value,” Phys. Rev. A85, 012107 (2012). [CrossRef]
  19. J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: Understanding quantum weak values: Basics and applications,” Rev. Mod. Phys.86, 307 (2014). [CrossRef]
  20. J. C. Howell, D. J. Starling, P. B. Dixon, P. K. Vudyasetu, and A. N. Jordan, “Interferometric weak value deflections: Quantum and classical treatments,” Phys. Rev. A81, 033813 (2010). [CrossRef]
  21. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory52, 1289–1306 (2006). [CrossRef]
  22. E. J. Candes, “The restricted isometry property and its implications for compressed sensing,” C. R. Math.346, 589–592 (2008). [CrossRef]
  23. A. Chambolle and P.-L. Lions, “Image recovery via total variation minimization and related problems,” Numer. Math.76, 167–188 (1997). [CrossRef]
  24. E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?” IEEE Trans. Inform. Theory52, 5406–5425 (2006). [CrossRef]
  25. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58, 1182–1195 (2007). [CrossRef] [PubMed]
  26. J. Bobin, J.-L. Starck, and R. Ottensamer, “Compressed sensing in astronomy,” IEEE J. Sel. Top. Signa.2, 718–726 (2008). [CrossRef]
  27. D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, “Quantum state tomography via compressed sensing,” Phys. Rev. Lett.105, 150401 (2010). [CrossRef]
  28. G. A. Howland and J. C. Howell, “Efficient high-dimensional entanglement imaging with a compressive-sensing double-pixel camera,” Phys. Rev. X3, 011013 (2013).
  29. E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Proc. Mag.25, 21–30 (2008). [CrossRef]
  30. J. Romberg, “Imaging via compressive sampling [introduction to compressive sampling and recovery via convex programming],” IEEE Signal Proc. Mag.25, 14–20 (2008). [CrossRef]
  31. C. Li, “Compressive sensing for 3D data processing tasks: applications, models and algorithms,” Ph.D. thesis, Rice University (2011).
  32. C. Li, W. Yin, and Y. Zhang, “Users guide for TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms,” CAAM Report (2009).
  33. P. S. Considine, “Effects of coherence on imaging systems,” J. Opt. Soc. Am.56, 1001–1007 (1966). [CrossRef]
  34. J. Goodman, Introduction to Fourier Optics (Roberts and Company, 2008).
  35. M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig.1, 586–597 (2007). [CrossRef]
  36. G. A. Howland, D. J. Lum, M. R. Ware, and J. C. Howell, “Photon counting compressive depth mapping,” Opt. Express21, 23822–23837 (2013). [CrossRef] [PubMed]
  37. J. D. Hunter, “Matplotlib: A 2D graphics environment,” IEEE Comput. Sci. Eng.9, 90–95 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited