OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 18881–18888

Hybridized resonances to design tunable binary phase metasurface unit cells

Nadège Kaina, Matthieu Dupré, Mathias Fink, and Geoffroy Lerosey  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 18881-18888 (2014)
http://dx.doi.org/10.1364/OE.22.018881


View Full Text Article

Enhanced HTML    Acrobat PDF (1556 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The recent concept of metasurfaces is a powerful tool to shape waves by governing precisely the phase response of each constituting element through its resonance properties. While most efforts are devoted to realize reconfigurable metasurfaces that allow such complete phase control, for many applications a binary one is sufficient. Here, we propose and demonstrate through experiments and simulations a binary state tunable phase reflector based on the concept of hybridized resonators as unit cell for a possible metasurface. The concept presents the great advantages to be very general, scalable to all frequency domains and above all very robust to fluctuations induced by the tunable mechanism, as we prove it at microwave frequencies using electronically tunable patch reflectors.

© 2014 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance
(350.4010) Other areas of optics : Microwaves
(350.5030) Other areas of optics : Phase
(160.3918) Materials : Metamaterials
(250.4110) Optoelectronics : Modulators

ToC Category:
Metamaterials

History
Original Manuscript: May 6, 2014
Revised Manuscript: July 11, 2014
Manuscript Accepted: July 16, 2014
Published: July 28, 2014

Citation
Nadège Kaina, Matthieu Dupré, Mathias Fink, and Geoffroy Lerosey, "Hybridized resonances to design tunable binary phase metasurface unit cells," Opt. Express 22, 18881-18888 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-18881


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev.5(1), 81–101 (2011). [CrossRef]
  2. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon.6(5), 283–292 (2012). [CrossRef]
  3. J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett.106(10), 103901 (2011). [CrossRef] [PubMed]
  4. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010). [CrossRef] [PubMed]
  5. J. Huang and J. A. Encinar, Reflectarray Antennas (John Wiley, 2007).
  6. T. H. Hand and S. A. Cummer, “Reconfigurable reflectarray using addressable metamaterials,” IEEE Antennas Wirel. Propag. Lett.9, 70–74 (2010). [CrossRef]
  7. S. V. Hum and J. Perruisseau-carrier, “'Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review,” IEEE Trans. Antennas Propag.62(1), 183–198 (2014). [CrossRef]
  8. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(6125), 1232009 (2013). [CrossRef] [PubMed]
  9. P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012). [CrossRef]
  10. B. O. Zhu, J. Zhao, and Y. Feng, “Active impedance metasurface with full 360° reflection phase tuning,” Sci. Rep.3, 3059 (2013).
  11. S. N. Burokur, J. P. Daniel, P. Ratajczak, and A. De Lustrac, “Tunable bilayered metasurface for frequency reconfigurable directive emissions,” Appl. Phys. Lett.97(6), 064101 (2010). [CrossRef]
  12. H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Trans. Antennas Propag.59(7), 2524 (2011). [CrossRef]
  13. D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express19(5), 4017–4029 (2011). [CrossRef] [PubMed]
  14. C. Della Giovampaola and N. Engheta, “Digital Metamaterials,” http://arxiv.org/abs/1403.6488 .
  15. R. Abdeddaim, A. Ourir, and J. de Rosny, “Realizing a negative index metamaterial by controlling hybridization of trapped modes,” Phys. Rev. B83(3), 033101 (2011). [CrossRef]
  16. C. Kittel, Introduction to Solid State Physics (Wiley, 1996).
  17. N. Kaina, M. Dupré, G. Lerosey, and M. Fink, “Shaping microwave fields in scattering and reverberating media with binary tunable metasurfaces,” submitted.
  18. A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature492(7427), 86–89 (2012). [CrossRef] [PubMed]
  19. G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep.4, 3584 (2014). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited