OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 18914–18923

Accurate and simultaneous measurement of thickness and refractive index of thermally evaporated thin organic films by surface plasmon resonance spectroscopy

T. Del Rosso, J. Edicson Hernández Sánchez, R. Dos Santos Carvalho, O. Pandoli, and M. Cremona  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 18914-18923 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2328 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that Surface Plasmon Resonance spectroscopy can be used for the accurate and simultaneous determination of the thickness and refractive index of transparent thin thermally deposited organic films. The experimental approach is based on a two-metal deposition or a two-thickness method. These methods have been applied to an encapsulated sample containing a thin film of commercial tris(8-hydroxyquinoline) (Alq3). The accuracy of the measurement depends on the control of the film deposition process and suggests the use of SPR spectroscopy as inexpensive and valuable metrology tool for small molecule organic thin films.

© 2014 Optical Society of America

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(160.4890) Materials : Organic materials
(240.6680) Optics at surfaces : Surface plasmons
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 11, 2014
Revised Manuscript: July 11, 2014
Manuscript Accepted: July 21, 2014
Published: July 29, 2014

T. Del Rosso, J. Edicson Hernández Sánchez, R. Dos Santos Carvalho, O. Pandoli, and M. Cremona, "Accurate and simultaneous measurement of thickness and refractive index of thermally evaporated thin organic films by surface plasmon resonance spectroscopy," Opt. Express 22, 18914-18923 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer-Verlag, 1988)
  2. J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev. 108(2), 462–493 (2008). [CrossRef] [PubMed]
  3. E. Giorgetti, M. Muniz-Miranda, A. Giusti, T. Del Rosso, G. Dellepiane, G. Margheri, S. Sottini, M. Alloisio, and C. Cuniberti, “Spectroscopic investigation on the in situ polymerization of self assembled monolayers of carbazolyldiacetylene CDS9 on silver-coated glass,” Thin Solid Films 495(1-2), 36–39 (2006). [CrossRef]
  4. E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001). [CrossRef]
  5. H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,” Opt. Commun. 82(5-6), 425–432 (1991). [CrossRef]
  6. K. A. Peterlinz and R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using Surface Plasmon Resonance Spectroscopy,” Opt. Commun. 130(4-6), 260–266 (1996). [CrossRef]
  7. R. Georgiadis, K. P. Peterlinz, and A. W. Peterson, “Quantitative measurements and modeling of kinetics in Nucleic Acid Monolayer Film using SPR spectroscopy,” J. Am. Chem. Soc. 122(13), 3166–3173 (2000). [CrossRef]
  8. J. S. Yuk and K. S. Ha, “Proteomic applications of surface plasmon resonance biosensors: analysis of protein arrays,” Exp. Mol. Med. 37(1), 1–10 (2005). [CrossRef] [PubMed]
  9. H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface Plasmon Resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010). [CrossRef]
  10. H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications (John Wiley & Sons Ltd, 2007)
  11. P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994). [CrossRef]
  12. S. P. Subbarao, M. E. Bahlke, and I. Kymissis, “Laboratory Thin-Film Encapsulation of Air-Sensitive Organic Semiconductor Devices,” IEEE Trans. Electron. Dev. 57(1), 153–156 (2010). [CrossRef]
  13. D. A. Ramsey and K. C. Ludema, “The influences of roughness on film thickness measurements by Mueller matrix ellipsometry,” Rev. Sci. Instrum. 65(9), 2874–2881 (1994). [CrossRef]
  14. A. M. Kostruba and O. G. Vlokh, “Accuracy of traditional ellipsometry and complex “ellipsometry – transmission photometry” techniques for systems “absorptive film – transparent substrate”,” Proc. SPIE 3094, 266–271 (1997). [CrossRef]
  15. B. Johs and C. M. Herzinger, “Quantifying the Accuracy of Ellipsometer Systems,” Phys. Status Solidi 5(5C), 1031–1035 (2008). [CrossRef]
  16. P. E. Burrows and S. R. Forrest, “Electroluminescence from trap limited current transport in vacuum deposited organic light emitting devices,” Appl. Phys. Lett. 64(17), 2285–2287 (1994). [CrossRef]
  17. N. Hajdukova, M. Prochazka, J. Stepanek, and M. Spirkova, “Chemically reduced and laser-ablated gold nanoparticles immobilized to silanized glass plates: Preparation, characterization and SERS spectral testing,” Colloids Surf. A Physicochem. Eng. Asp. 301(1-3), 264–270 (2007). [CrossRef]
  18. S. Cowen and J. R. Sambles, “Resolving the apparent ambiguity in determining the relative permittivity and thickness of a metal film using optical excitation of surface-plasmon polariton,” Opt. Commun. 79(6), 427–430 (1990). [CrossRef]
  19. S. Kumar, V. K. Shukla, and A. Tripathi, “Ellipsometric investigations on the light induced effects on tris(8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 477(1-2), 240–243 (2005). [CrossRef]
  20. V. K. Shukla and S. Kumar, “Investigations of environmental induced effects on Alq3 thin films by AFM phase imaging,” Appl. Surf. Sci. 253(16), 6848–6853 (2007). [CrossRef]
  21. S. Sellner, A. Gerlach, S. Kowarik, F. Schreiber, H. Dosch, S. Meyer, J. Pflaum, and G. Ulbricht, “Comparative Study of the Growth of Sputtered Aluminum Oxide Films on Organic and Inorganic Substrates,” Thin Solid Films 516(18), 6377–6381 (2008). [CrossRef]
  22. M. Higo, X. Lu, U. Mazur, and K. W. Hipps, “Preparation of Atomically Smooth Aluminum Films: Characterization by Transmission Electron Microscopy and Atomic Force Microscopy,” Langmuir 13(23), 6176–6182 (1997). [CrossRef]
  23. J. Worm, “Winspall 2.20 software,” 2001, http://www.mpip-mainz.mpg.de/ johanns/winspall2.ZIP
  24. H. E. Bruijn, R. P. Kooyman, and J. Greve, “Determination of dielectric permittivity and thickness of a metal layer from a surface plasmon resonance experiment,” Appl. Opt. 29(13), 1974–1978 (1990). [CrossRef] [PubMed]
  25. U. Schröder, “Der einfluss dünner metallischer decks chichten auf die dispersion von oberflächenplasmaschwingungen in gold-silber-schichtsystemen,” Surf. Sci. 102(1), 118–130 (1981). [CrossRef]
  26. B. G. Tilkens, Y. F. Lion, and Y. L. Renotte, “Uncertainties in the values obtained by surface plasmon resonance,” Opt. Eng. 39(2), 363–373 (2000). [CrossRef]
  27. I. Pockrand, “Surface Plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72(3), 577–588 (1978). [CrossRef]
  28. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007). [CrossRef]
  29. C. Himcinschi, N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H. H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, “Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition,” Appl. Phys., A Mater. Sci. Process. 80(3), 551–555 (2005). [CrossRef]
  30. A. B. Djurisic, C. Y. Kwong, W. L. Guo, T. W. Lau, E. H. Li, Z. T. Liu, H. S. Kwok, L. S. M. Lam, and W. K. Chan, “Spectroscopic ellipsometry of the optical functions of tris (8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 416(1-2), 233–241 (2002). [CrossRef]
  31. M. M. El-Nahass, A. M. Farid, and A. A. Atta, “Structural and optical properties of Tris(8-hydroxyquinoline) aluminum (III) (Alq3) thermal evaporated thin films,” J. Alloy. Comp. 507(1), 112–119 (2010). [CrossRef]
  32. F. F. Muhammad and K. Sulaiman, “Utilizing a simple and reliable method to investigate the optical functions of small molecular organic films – Alq3 and Gaq3 as examples,” Measurement 44(8), 1468–1474 (2011). [CrossRef]
  33. R. R. Willey, Practical Monitoring and Control of Optical Thin Films (Willey Optical Consultants, 2007)
  34. A. J. Moulé and K. Meerholz, “Interference method for the determination of the complex refractive index of thin polymers layers,” Appl. Phys. Lett. 91(6), 0619011 (2007). [CrossRef]
  35. J. A. E. Wasey and W. L. Barnes, “Efficiency of spontaneous emission from planar microcavities,” J. Mod. Opt. 47(4), 725–741 (2000). [CrossRef]
  36. R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010). [CrossRef]
  37. Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited