OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 18987–19004

Analysis of InAsSb nBn spectrally filtering photon-trapping structures

Jonathan Schuster, Arvind D’Souza, and Enrico Bellotti  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 18987-19004 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2222 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have numerically analyzed the electromagnetic and electrical characteristics of InAsSb nBn infrared detectors employing a photon-trapping (PT) structure realized with a periodic array of pyramids intended to provide broadband operation. The three-dimensional numerical simulation model was verified by comparing the simulated dark current and quantum efficiency to experimental data. Then, the power and flexibility of the nBn PT design was used to engineer spectrally filtering PT structures. That is, detectors that have a predetermined spectral response to be more sensitive in certain spectral ranges and less sensitive in others.

© 2014 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(040.1240) Detectors : Arrays
(040.3060) Detectors : Infrared
(040.5350) Detectors : Photovoltaic
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: May 22, 2014
Revised Manuscript: June 25, 2014
Manuscript Accepted: July 1, 2014
Published: July 29, 2014

Jonathan Schuster, Arvind D’Souza, and Enrico Bellotti, "Analysis of InAsSb nBn spectrally filtering photon-trapping structures," Opt. Express 22, 18987-19004 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Fulk, S. Tobin, J. Cook, K. K. Wong, T. Parodos, R. Khanna, K. Snell, M. Reine, J. Schuster, E. Bellotti, D. Hobbs, and B. MacLeod, “AWARE broadband - photon trap structures for quantum advanced detectors at BAE Systems,” in Proceedings of Meeting of the Military Sensing Symposia (MSS), (2012).
  2. C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors,” Appl. Phys. Lett. 99, 091109 (2011). [CrossRef]
  3. J. Schuster and E. Bellotti, “Numerical simulation of crosstalk in reduced pitch HgCdTe photon-trapping structure pixel arrays,” Opt. Express 21, 14712–14727 (2013). [CrossRef] [PubMed]
  4. A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011). [CrossRef]
  5. A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, H. Sharifi, M. Roebuck, D. Yap, R. D. Rajavel, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “Electrooptical characterization of MWIR InAsSb detectors,” J. Electron. Mater. 41, 2671–2678 (2012). [CrossRef]
  6. D. Hobbs and B. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE 5786, 349–364 (2005). [CrossRef]
  7. B. D. MacLeod and D. S. Hobbs, “Long life, high performance anti-reflection treatment for HgCdTe infrared focal plane arrays,” Proc. SPIE 6940, 69400Y (2008). [CrossRef]
  8. S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89, 151109 (2006). [CrossRef]
  9. P. Klipstein, “Depletion-less photodiode with suppressed dark current and method for producing the same,” U.S. Patent 7,795,640, Sept. 14, 2010; Foreign application priority data July 2, 2003.
  10. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), 3rd ed.
  11. Synopsys, Sentaurus Device Electromagnetic Wave Solver User Guide(2013). Version H-2013.03.
  12. Synopsys, Sentaurus Device User Guide(2013). Version H-2013.03.
  13. E. Bellotti and D. D’Orsogna, “Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors,” IEEE J. Quantum Electron. 42, 418–426 (2006). [CrossRef]
  14. D. D’Orsogna, S. P. Tobin, and E. Bellotti, “Numerical analysis of a very long-wavelength HgCdTe pixel array for infrared detection,” J. Electron. Mater. 37, 1349–1355 (2008). [CrossRef]
  15. C. A. Keasler and E. Bellotti, “Three-dimensional electromagnetic and electrical simulation of HgCdTe pixel arrays,” J. Electron. Mater. 40, 1795–1801 (2011). [CrossRef]
  16. J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, “Numerical simulation of third-generation HgCdTe detector pixel arrays,” IEEE J. Select. Topics Quantum Electron. 19, 3800415 (2013). [CrossRef]
  17. H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, and N. Dhar, “Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays,” Proc. SPIE 8704, 87041U (2013). [CrossRef]
  18. A. D’Souza, E. Robinson, A. Ionescu, D. Okerlund, T. de Lyon, R. Rajavel, H. Sharifi, N. Dhar, P. Wijewarnasuriya, and C. Grein, “MWIR HgCdTe and InAs1−xSbx detector comparison,” The US Workshop on the Physics and Chemistry of II–VI Materials, Seattle, WA (2012).
  19. M. Reine, A. Sood, and T. Tredwell, Mercury Cadmium Telluride, Semiconductors and Semimetals, R.K. Willardson and A.C. Beer, eds. (Academic, 1966), Vol. 18, Chap. 6, pp. 201–312. [CrossRef]
  20. J. Schuster and E. Bellotti, “Analysis of optical and electrical crosstalk in small pitch photon trapping HgCdTe pixel arrays,” Appl. Phys. Lett. 101, 261118 (2012). [CrossRef]
  21. X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19, A841–A850 (2011). [CrossRef] [PubMed]
  22. S. Campana, The Infrared & Electro-Optical Systems Handbook, (Copublished by Infrared Information Analysis Center and SPIE, 1993), Vol. 5.
  23. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 2007), 2nd ed.
  24. S. Adachi, III–V Compound Semiconductors of Handbook of Physical Properties of Semiconductors (Kluwer Academic Publishers, 2004), Vol. 2.
  25. IOFFE, http://www.ioffe.ru/SVA/NSM//Semicond/InAsSb/basic.html (2013). And references provided.
  26. A. Rogalski, R. Ciupa, and W. Larkowski, “Near room-temperature InAsSb photodiodes: Theoretical predictions and experimental data,” Solid-State Electron. 39, 1593–1600 (1996). [CrossRef]
  27. A. Rogalski, New Ternary Alloy Systems for Infrared Detectors (SPIE, 1994).
  28. O. Madelung, Semiconductors - Basic Data (Springer, 1996). [CrossRef]
  29. C. Grein, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA (personal communication, 2013).
  30. S. Jain, J. McGregor, and D. Roulston, “Band-gap narrowing in novel III–V semiconductors,” J. Appl. Phys. 68, 3747–3749 (1990). [CrossRef]
  31. P. Paskov, “Refractive indices of InSb, GaSb, InAsxSb1−x and In1−xGaxSb: Effect of free carriers,” J. Appl. Phys. 81, 1890–1898 (1997). [CrossRef]
  32. E. D. Palik and R. T. Holm, Handbook of Optical Constants of Solids, (Academic, 1998), Vol. 1.
  33. I. Vurgaftman, J. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited