OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19014–19020

Continuous-wave and Q-switched operation of a resonantly pumped polycrystalline ceramic Ho:LuAG laser

Ting Zhao, Yong Wang, Deyuan Shen, Jian Zhang, Dingyuan Tang, and Hao Chen  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19014-19020 (2014)
http://dx.doi.org/10.1364/OE.22.019014


View Full Text Article

Enhanced HTML    Acrobat PDF (1398 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have reported continuous-wave (CW) and Q-switched operations of a polycrystalline ceramic Ho:LuAG laser in band pumped by a Tm:fiber laser at the wavelength of 1907 nm. By using an output coupler of 20% transmission, maximum continuous-wave output power of 2.87 W for 9.72 W of incident pump power was achieved, corresponding to a slope efficiency of 31.9%. Shortest pulse duration of 21.0 ns with peak power of 28.2 kW has been obtained at 500 Hz pulse repetition frequency (PRF) under 5.65 W of incident pump power.

© 2014 Optical Society of America

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(140.3540) Lasers and laser optics : Lasers, Q-switched
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 23, 2014
Revised Manuscript: July 11, 2014
Manuscript Accepted: July 11, 2014
Published: July 29, 2014

Citation
Ting Zhao, Yong Wang, Deyuan Shen, Jian Zhang, Dingyuan Tang, and Hao Chen, "Continuous-wave and Q-switched operation of a resonantly pumped polycrystalline ceramic Ho:LuAG laser," Opt. Express 22, 19014-19020 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19014


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics (Intech, 2010), pp. 471–500.
  2. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B17(5), 723–727 (2000). [CrossRef]
  3. E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, and G. Rustad, “Midinfrared laser source with high power and beam quality,” Appl. Opt.45(16), 3839–3845 (2006). [CrossRef] [PubMed]
  4. F. Wang, D. Y. Shen, D. Y. Fan, and Q. S. Lu, “Widely tunable dual-wavelength operation of a high-power Tm:fiber laser using volume Bragg gratings,” Opt. Lett.35(14), 2388–2390 (2010). [CrossRef] [PubMed]
  5. Y. J. Shen, B. Q. Yao, X. M. Duan, G. L. Zhu, W. Wang, Y. L. Ju, and Y. Z. Wang, “103 W in-band dual-end-pumped Ho:YAG laser,” Opt. Lett.37(17), 3558–3560 (2012). [CrossRef] [PubMed]
  6. S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106(2), 315–319 (2012). [CrossRef]
  7. D. W. Hart, M. Jani, and N. P. Barnes, “Room-temperature lasing of end-pumped Ho:Lu3Al5O12,” Opt. Lett.21(10), 728–730 (1996). [CrossRef] [PubMed]
  8. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photon.2(12), 721–727 (2008). [CrossRef]
  9. J. Wisdom, M. Digonnet, and R. L. Byer, “Ceramic lasers: ready for action,” Photon. Spectra38, 2–8 (2004).
  10. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006). [CrossRef]
  11. T. Taira, “Ceramic YAG lasers,” C. R. Phys.8(2), 138–152 (2007). [CrossRef]
  12. T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 798–809 (2007). [CrossRef]
  13. P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12μm,” Opt. Mater. Express1(8), 1447–1456 (2011). [CrossRef]
  14. G. A. Newburgh, A. Word-Daniels, A. Michael, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 µm laser,” Opt. Express19(4), 3604–3611 (2011). [CrossRef] [PubMed]
  15. H. Chen, D. Y. Shen, J. Zhang, H. Yang, D. Y. Tang, T. Zhao, and X. F. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett.36(9), 1575–1577 (2011).
  16. T. Zhao, Y. Wang, H. Chen, and D. Y. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B, published on line.
  17. L. Wang, C. Q. Gao, M. W. Gao, Y. Li, F. Y. Yue, J. Zhang, and D. Y. Tang, “A resonantly-pumped tunable Q-switched Ho:YAG ceramic laser with diffraction-limit beam quality,” Opt. Express22(1), 254–261 (2014). [CrossRef] [PubMed]
  18. X. M. Duan, B. Q. Yao, G. Li, Y. L. Ju, Y. Z. Wang, and G. J. Zhao, “High efficient actively Q-switched Ho:LuAG laser,” Opt. Express17(24), 21691–21697 (2009). [CrossRef] [PubMed]
  19. H. Yang, J. Zhang, D. W. Luo, H. Lin, H. Chen, D. Y. Shen, and D. Y. Tang, “Optical properties and laser performance of Ho:LuAG ceramics,” Phys. Status Solidi C10(6), 903–906 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited