OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19021–19028

Substrate effects on the transmittance of 1D metal grid transparent electrodes

Kilbock Lee and Jinho Ahn  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19021-19028 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2396 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of the presence of substrates below metal grids on light transmission is investigated through finite-different time-domain (FDTD) simulations. Comparing grids on substrates with suspended grids, we identify the effects of the presence of substrates on the transmittances of metal grids. The presence of substrates below micron-scale grids has no specific effect on their transmittances; however, unexpected dips and flattened peaks in transmission spectra were observed in nano-scale grids. The figures of merits (FoMs) of metal grids are calculated using estimated transmittances and grid sheet resistances. Due to their lower resistances and higher transmittances, micron-scale grids show higher FoMs than nano-scale grids and, are thus promising transparent conducting electrode candidates. The best 1D grid electrode in this work exhibited a figure of merit, σdc/σop, > 1000

© 2014 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(310.6628) Thin films : Subwavelength structures, nanostructures
(310.7005) Thin films : Transparent conductive coatings

ToC Category:

Original Manuscript: June 4, 2014
Revised Manuscript: July 5, 2014
Manuscript Accepted: July 10, 2014
Published: July 29, 2014

Kilbock Lee and Jinho Ahn, "Substrate effects on the transmittance of 1D metal grid transparent electrodes," Opt. Express 22, 19021-19028 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010). [CrossRef] [PubMed]
  2. K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012). [CrossRef]
  3. J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012). [CrossRef] [PubMed]
  4. Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S.-J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1-2), 201–205 (2001). [CrossRef]
  5. H.-K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. Jeong, K. Kim, and T.-Y. Seong, “Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 86, 183503 (2005).
  6. D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011). [CrossRef] [PubMed]
  7. J. Huang, P. Miller, J. Wilson, A. Mello, J. Mello, and D. Bradley, “Investigation of the effects of doping and postdeposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films,” Adv. Funct. Mater. 15(2), 290–296 (2005). [CrossRef]
  8. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009). [CrossRef] [PubMed]
  9. D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013). [CrossRef] [PubMed]
  10. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004). [CrossRef] [PubMed]
  11. P. Santhosh and K. Dong-Won, “Preparation and characterization of highly conductive transparent films with single-walled carbon nanotubes for flexible display applications,” Carbon 47, 2436–2441 (2009).
  12. M. C. Rosamond, A. J. Gallant, J. J. Atherton, M. C. Petty, O. Kolosov, and D. A. Zeze, “Transparent gold nanowire electrodes,” in the 11th IEEE Conference on Nanotechnology (IEEE-NANO, 2011), pp. 604–607.
  13. P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, “Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network,” Adv. Mater. 24(25), 3326–3332 (2012). [CrossRef] [PubMed]
  14. J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008). [CrossRef] [PubMed]
  15. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 3(7), 1767–1774 (2009). [CrossRef] [PubMed]
  16. T. Gao and P. W. Leu, “The role of propagating modes in silver nanowire arrays for transparent electrodes,” Opt. Express 21(S3Suppl 3), A419–A429 (2013). [CrossRef] [PubMed]
  17. A. J. Jin and K. Han-Ki, “Low resistance and highly transparent ITO–Ag–ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells 93(10), 1801–1809 (2009).
  18. M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures,” Nano Lett. 13(6), 2814–2821 (2013). [CrossRef] [PubMed]
  19. F. Solutions, “Lumerical Solutions Inc,” Vancouver, British Columbia, Canada (Accessed January 2013), http://www.lumerical.com/tcad-products/fdtd (2003).
  20. W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics 2012–2013 (CRC Press, 2012).
  21. K. Lee, S. H. Song, and J. Ahn, “FDTD simulation of transmittance characteristics of one-dimensional conducting electrodes,” Opt. Express 22(6), 6269–6275 (2014). [CrossRef] [PubMed]
  22. L. Rayleigh, “III.Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philosophical Magazine Series 6 14(79), 60–65 (1907). [CrossRef]
  23. D. Maystre, “Theory of Wood’s Anomalies,” in Plasmonics, S. Enoch, and N. Bonod, eds. (Springer, 2012), pp. 39–83.
  24. J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009). [CrossRef] [PubMed]
  25. B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci Rep 3, 2840 (2013). [CrossRef] [PubMed]
  26. K. Fuchs and N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Camb. Philos. Soc. 34(01), 100–108 (1938). [CrossRef]
  27. E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1(1), 1–42 (1952). [CrossRef]
  28. S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, and S. O. Kim, “Soft graphoepitaxy of block copolymer assembly with disposable photoresist confinement,” Nano Lett. 9(6), 2300–2305 (2009). [CrossRef] [PubMed]
  29. D. Josell, S. H. Brongersma, and Z. Tokei, “Size-Dependent Resistivity in Nanoscale Interconnects,” Annu. Rev. Mater. Res. 39(1), 231–254 (2009). [CrossRef]
  30. R. B. Dingle, “The Electrical Conductivity of Thin Wires,” Proc. R. Soc. Lond. A Math. Phys. Sci. 201(1067), 545–560 (1950). [CrossRef]
  31. N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Saunders College, 1976).
  32. W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004). [CrossRef]
  33. L. Hu, D. S. Hecht, and G. Grüner, “Percolation in transparent and conducting carbon nanotube networks,” Nano Lett. 4(12), 2513–2517 (2004). [CrossRef]
  34. T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012). [CrossRef]
  35. S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4(12), 7064–7072 (2010). [CrossRef] [PubMed]
  36. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited