OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19029–19039

A 32 × 32 optical phased array using polysilicon sub-wavelength high-contrast-grating mirrors

Byung-Wook Yoo, Mischa Megens, Tianbo Sun, Weijian Yang, Connie J. Chang-Hasnain, David A. Horsley, and Ming C. Wu  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19029-19039 (2014)
http://dx.doi.org/10.1364/OE.22.019029


View Full Text Article

Enhanced HTML    Acrobat PDF (1714 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on microelectromechanical systems (MEMS)-actuated 32 × 32 optical phased arrays (OPAs) with high fill-factors and microsecond response time. To reduce the mirror weight and temperature-dependent curvature, we use high-contrast-grating (HCG) mirrors comprising a single layer of sub-wavelength polysilicon gratings with 400 nm thickness, 1250 nm pitch, and 570 nm grating bar width. The mirror has a broad reflection band and a peak reflectivity of 99.9% at 1550 nm wavelength. With 20 × 20 μm2 pixels and 2 μm, the OPA has a total aperture of 702 × 702 μm2 and a fill factor of 85%. The OPA is electrostatically controlled by voltage and has a total field of view of ± 2°, an instantaneous field of view (beam width) of 0.14°, and a response time of 3.8 μs. The latter agrees well with the mechanical resonance frequency of the HCG mirror (0.42 MHz).

© 2014 Optical Society of America

OCIS Codes
(110.5100) Imaging systems : Phased-array imaging systems
(230.1950) Optical devices : Diffraction gratings
(220.4241) Optical design and fabrication : Nanostructure fabrication
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Optical Devices

History
Original Manuscript: June 10, 2014
Revised Manuscript: July 18, 2014
Manuscript Accepted: July 19, 2014
Published: July 29, 2014

Citation
Byung-Wook Yoo, Mischa Megens, Tianbo Sun, Weijian Yang, Connie J. Chang-Hasnain, David A. Horsley, and Ming C. Wu, "A 32 × 32 optical phased array using polysilicon sub-wavelength high-contrast-grating mirrors," Opt. Express 22, 19029-19039 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19029


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE84(2), 268–298 (1996). [CrossRef]
  2. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett.21(9), 689–691 (1996). [CrossRef] [PubMed]
  3. B. Wang, G. Zhang, A. Glushchenko, J. L. West, P. J. Bos, and P. F. McManamon, “Stressed liquid-crystal optical phased array for fast tip-tilt wavefront correction,” Appl. Opt.44(36), 7754–7759 (2005). [CrossRef] [PubMed]
  4. S. Serati and J. Stockley, “Advanced liquid crystal on silicon optical phased arrays,” in Aerosp. Conf. Proc.3, 1395–1402 (2002). [CrossRef]
  5. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97(6), 1078–1096 (2009). [CrossRef]
  6. R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, “Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems,” Appl. Opt.52(14), 3172–3177 (2013). [CrossRef] [PubMed]
  7. K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-Insulator,” Opt. Express18(13), 13655–13660 (2010). [CrossRef] [PubMed]
  8. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express19(22), 21595–21604 (2011). [CrossRef] [PubMed]
  9. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493(7431), 195–199 (2013). [CrossRef] [PubMed]
  10. I. W. Jung, U. Krishnamoorthy, and O. Solgaard, “High fill-factor two-axis gimbaled tip-tilt-piston micromirror array actuated by self-aligned vertical electrostatic combdrives,” J. Microelectromech. Syst.15(3), 563–571 (2006). [CrossRef]
  11. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photon.1(2), 119–122 (2007). [CrossRef]
  12. C. Chase, Y. Zhou, and C. J. Chang-Hasnain, “Size effect of high contrast gratings in VCSELs,” Opt. Express17(26), 24002–24007 (2009). [CrossRef] [PubMed]
  13. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004). [CrossRef]
  14. B. W. Yoo, M. Megens, T. Chan, T. Sun, W. Yang, C. J. Chang-Hasnain, D. A. Horsley, and M. C. Wu, “Optical phased array using high contrast gratings for two dimensional beamforming and beamsteering,” Opt. Express21(10), 12238–12248 (2013). [CrossRef] [PubMed]
  15. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon.4(3), 379–440 (2012). [CrossRef]
  16. M. C. Y. Huang, K. Lee, D. Parekh, and C. J. Chang-Hasnain, “Large fabrication tolerance of ultra broadband sub-wavelength grating reflctor,” in IEEE LEOS Ann. Mtg.1, 364–365 (2004). [CrossRef]
  17. T. K. Chan, M. Megens, B. W. Yoo, J. Wyras, C. J. Chang-Hasnain, M. C. Wu, and D. A. Horsley, “Optical beamsteering using an 8 × 8 MEMS phased array with closed-loop interferometric phase control,” Opt. Express21(3), 2807–2815 (2013). [CrossRef] [PubMed]
  18. D. T. Amm and R. W. Corrigan, “Grating Light ValveTM technology: update and novel applications,” in SID Int. Symp. Dig. Tec.29, 29–32 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (12 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited