OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19087–19097

Narrow linewidth two-electrode 1560 nm laterally coupled distributed feedback lasers with third-order surface etched gratings

Kais Dridi, Abdessamad Benhsaien, Jessica Zhang, Karin Hinzer, and Trevor J. Hall  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19087-19097 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2428 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the design and characterization of a re-growth free InGaAsP/InP multiple quantum well two-electrode laterally coupled distributed feedback (LC-DFB) lasers. Third-order surface etched gratings have been defined on the ridge sidewalls along the laser cavity by means of stepper lithography. The lasers oscillate in single-mode around 1560 nm with high side mode suppression ratios (>52 dB), a wavelength tuning (≥ 3nm), an output power (≥ 6 mW), and narrow linewidth (<170 kHz) under various current injection ranges at room temperature. A minimum linewidth of 94 kHz has been recorded for 1500 µm-long two-electrode LC-DFB laser while providing non-uniform current injection through the two electrodes. The effect of the width of the inter-electrode gap on these different performance measures is also studied.

© 2014 Optical Society of America

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 13, 2014
Revised Manuscript: July 14, 2014
Manuscript Accepted: July 14, 2014
Published: July 30, 2014

Kais Dridi, Abdessamad Benhsaien, Jessica Zhang, Karin Hinzer, and Trevor J. Hall, "Narrow linewidth two-electrode 1560 nm laterally coupled distributed feedback lasers with third-order surface etched gratings," Opt. Express 22, 19087-19097 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–320 (2004). [CrossRef]
  2. F. A. Fish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. V. Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. J. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current Status of Large-Scale InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1470–1489 (2011). [CrossRef]
  3. R. M. Briggs, C. Frez, M. Bagheri, C. E. Borgentun, J. A. Gupta, M. F. Witinski, J. G. Anderson, and S. Forouhar, “Single-mode 2.65 µm InGaAsSb/AlInGaAsSb laterally coupled distributed-feedback diode lasers for atmospheric gas detection,” Opt. Express 21(1), 1317–1323 (2013). [CrossRef] [PubMed]
  4. H. Nasim and Y. Jamil, “Diode lasers: From laboratory to industry,” Opt. Laser Technol. 56, 211–222 (2014). [CrossRef]
  5. L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett. 3(1), 6–8 (1991). [CrossRef]
  6. Z.-L. Liau, D. C. Flanders, J. N. Walpole, and N. DeMeo, “A novel GaInAsP/InP distributed feedback laser,” Appl. Phys. Lett. 46(3), 221–223 (1985). [CrossRef]
  7. R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunsperger, R. C. Tiberio, and P. F. Chapman, “CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett. 7(3), 244–246 (1995). [CrossRef]
  8. N. Chen, Y. Watanabe, K. Takei, and K. Chikuma, “InGaAsP/InP laterally coupled distributed feedback laser,” Jpn. J. Appl. Phys. 39(Part 1, No. 3B), 1508–1511 (2000). [CrossRef]
  9. M. Kamp, J. Hofmann, A. Forchel, F. Schafer, and J.-P. Reithmaier, “Low-threshold high-quantum-efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers,” Appl. Phys. Lett. 74(4), 483–485 (1999). [CrossRef]
  10. M. Müller, M. Kamp, A. Forchel, and J.-L. Gentner, “Wide-range-tunable laterally coupled distributed feedback lasers based on InGaAsP–InP,” Appl. Phys. Lett. 79(17), 2684–2686 (2001). [CrossRef]
  11. A. Antreasyan and S. Wang, “Electronic wavelength tuning with semiconductor integrated etalon interference lasers,” Appl. Phys. Lett. 43(6), 530–532 (1983). [CrossRef]
  12. Z.-J. Fang and S. Wang, “Longitudinal mode behavior and tunability of separately pumped (GaAl)As lasers,” Appl. Phys. Lett. 44(1), 13–15 (1984). [CrossRef]
  13. Y. Yoshikuni, K. Oe, G. Motosugi, and T. Matsuoka, “Broad wavelength tuning under single-mode oscillation with a multi-electrode distributed feedback laser,” Electron. Lett. 22(22), 1153–1154 (1986). [CrossRef]
  14. Y. Yoshikuni and G. Motosugi, “Multielectrode distributed feedback laser for pure frequency modulation and chirping suppressed amplitude modulation,” J. Lightwave Technol. 5(4), 516–522 (1987). [CrossRef]
  15. M. Usami and S. Akiba, “Suppression of longitudinal spatial hole-burning effect in λ/4-shifted DFB lasers by nonuniform current distribution,” IEEE J. Quantum Electron. 25(6), 1245–1253 (1989). [CrossRef]
  16. D. Leclerc, J. Jacquet, D. Sigogne, C. Labourie, Y. Louis, C. Artigue, and J. Benoit, “Three-electrode DFB wavelength tunable FSK transmitter at 1.53 μm,” Electron. Lett. 25(1), 45–47 (1989). [CrossRef]
  17. M. Fukuda, K. Sato, Y. Kondo, and M. Nakao, “Continuously tunable thin active layer and multisession DFB laser with narrow linewidth and high power,” J. Lightwave Technol. 7(10), 1504–1509 (1989). [CrossRef]
  18. M. Muller, F. Klopf, M. Kamp, J.-P. Reithmaier, and A. Forchel, “Wide range tunable laterally coupled distributed-feedback lasers based on InGaAs-GaAs quantum dots,” IEEE Photon. Technol. Lett. 14(9), 1246–1248 (2002). [CrossRef]
  19. N. A. Naderi, F. Grillot, K. Yang, J. B. Wright, A. Gin, and L. F. Lester, “Two-color multi-section quantum dot distributed feedback laser,” Opt. Express 18(26), 27028–27035 (2010). [CrossRef] [PubMed]
  20. T. Lehnhardt, S. Hofling, M. Kamp, L. Worschech, and A. Forchel, “Tunable long wavelength (~2.8 μm) GaInAsSb–GaSb quantum-well binary superimposed grating lasers,” IEEE Photon. Technol. Lett. 22, 1662–1664 (2010).
  21. K. Dridi, A. Benhsaien, J. Zhang, and T. J. Hall, “Narrow linewidth 1550 nm corrugated ridge waveguide DFB lasers,” IEEE Photon. Technol. Lett. 26(12), 1192–1195 (2014). [CrossRef]
  22. C. Y. Kuo and N. K. Dutta, “Characteristics of two-electrode DFB lasers,” Electron. Lett. 24(15), 947–949 (1988). [CrossRef]
  23. LAS2D software, Laboratoire d’Optoélectronique, École Polytechnique de Montréal, Montréal, QC, Canada (2006).
  24. M. Kuznetsov, “Theory of wavelength tuning in two-segment distributed feedback lasers,” IEEE J. Quantum Electron. 24(9), 1837–1844 (1988). [CrossRef]
  25. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980). [CrossRef]
  26. L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991). [CrossRef]
  27. S. Spiessberger, M. Schiemangk, A. Wicht, H. Wenzel, O. Brox, and G. Erbert, “Narrow Linewidth DFB Lasers Emitting Near a Wavelength of 1064 nm,” J. Lightwave Technol. 28(17), 2611–2616 (2010). [CrossRef]
  28. J. Telkkälä, J. Viheriälä, A. Aho, P. Melanen, J. Karinen, M. Dumitrescu, and M. Guina, “Narrow linewidth laterally-coupled 1.55 μ m DFB lasers fabricated using nanoimprint lithography,” Electron. Lett. 47(6), 400–401 (2011). [CrossRef]
  29. S. Murata, I. Mito, and K. Kobayashi, “Spectral characteristics for 1.5 µm DBR laser with frequency-tuning region,” IEEE J. Quantum Electron. 23(6), 835–838 (1987). [CrossRef]
  30. S. Ogita, M. Yano, H. Ishikawa, and H. Imai, “Linewidth reduction in DFB laser by detuning effect,” Electron. Lett. 23(8), 393–394 (1987). [CrossRef]
  31. K. Y. Liou, N. K. Dutta, and C. A. Burrus, “Linewidth narrowed distributed feedback injection lasers with long cavity length and detuned Bragg wavelength,” Appl. Phys. Lett. 50(9), 489–491 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited