OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19098–19107

Widely tunable chiral nematic liquid crystal optical filter with microsecond switching time

Mohammad Mohammadimasoudi, Jeroen Beeckman, Jungsoon Shin, Keechang Lee, and Kristiaan Neyts  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19098-19107 (2014)
http://dx.doi.org/10.1364/OE.22.019098


View Full Text Article

Enhanced HTML    Acrobat PDF (3559 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A wavelength shift of the photonic band gap of 141 nm is obtained by electric switching of a partly polymerized chiral liquid crystal. The devices feature high reflectivity in the photonic band gap without any noticeable degradation or disruption and have response times of 50 µs and 20 µs for switching on and off. The device consists of a mixture of photo-polymerizable liquid crystal, non-reactive nematic liquid crystal and a chiral dopant that has been polymerized with UV light. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.

© 2014 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.3710) Materials : Liquid crystals
(230.2090) Optical devices : Electro-optical devices
(160.4236) Materials : Nanomaterials
(160.5293) Materials : Photonic bandgap materials
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

History
Original Manuscript: June 9, 2014
Revised Manuscript: July 23, 2014
Manuscript Accepted: July 23, 2014
Published: July 30, 2014

Citation
Mohammad Mohammadimasoudi, Jeroen Beeckman, Jungsoon Shin, Keechang Lee, and Kristiaan Neyts, "Widely tunable chiral nematic liquid crystal optical filter with microsecond switching time," Opt. Express 22, 19098-19107 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19098


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. G. De Gennes, The Physics of Liquid Crystals (Clarendon, 1974).
  2. D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994). [CrossRef]
  3. V. A. Belyakov, “Low threshold DFB lasing at the edge and defect modes in chiral liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)488(1), 279–308 (2008). [CrossRef]
  4. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater.16(910), 791–795 (2004). [CrossRef]
  5. H. Shirvani-Mahdavi, E. Mohajerani, and S. T. Wu, “Circularly polarized high-efficiency cholesteric liquid crystal lasers with a tunable nematic phase retarder,” Opt. Express18(5), 5021–5027 (2010). [CrossRef] [PubMed]
  6. A. D. Ford, S. M. Morris, and H. J. Coles, “Phototonics and lasing in liquid crystals,” Mater. Today9(7-8), 36–42 (2006). [CrossRef]
  7. L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys.113(6), 063106 (2013). [CrossRef]
  8. Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, “Improved lasing threshold of cholesteric liquid crystal lasers with In-Plane Helix Alignment,” Jpn. J. Appl. Phys.3, 102702 (2010).
  9. S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, “Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes,” J. Incl. Phenom. Macrocycl. Chem.72(1-2), 227–232 (2012). [CrossRef]
  10. Y. H. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express14(3), 1236–1242 (2006). [CrossRef] [PubMed]
  11. K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl.Phys. Part 2 Lett42(Part 2, No. 12B), L1523–L1525 (2003). [CrossRef]
  12. L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys.103(9), 093107 (2008). [CrossRef]
  13. S. Furumi and N. Tamaoki, “Glass-Forming Cholesteric Liquid Crystal Oligomers for New Tunable Solid-State Laser,” Adv. Mater.22(8), 886–891 (2010). [CrossRef] [PubMed]
  14. S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett.88(10), 103121 (2006). [CrossRef]
  15. G. S. Chilaya, “Light-controlled change in the helical pitch and broadband tunable cholesteric liquid-crystal lasers,” Crystallogr. Rep.51(S1), S108–S118 (2006). [CrossRef]
  16. T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, C. Bailey, L. Green, Q. A. Li, and T. J. Bunning, “Electromechanical and light tunable cholesteric liquid crystals,” Opt. Commun.283(18), 3434–3436 (2010). [CrossRef]
  17. H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater.13(14), 1069–1072 (2001). [CrossRef]
  18. H. P. Yu, B. Y. Tang, J. H. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express13(18), 7243–7249 (2005). [CrossRef] [PubMed]
  19. Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric field dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)516(1), 182–189 (2010). [CrossRef]
  20. H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, “Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment,” Appl. Phys. Lett.94(9), 093306 (2009). [CrossRef]
  21. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater.21(38–39), 3915–3918 (2009). [CrossRef]
  22. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater.22(1), 53–56 (2010). [CrossRef] [PubMed]
  23. B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kong, “Electrically controllable omnidirectional laser emission from a helical-Polymer network composite film,” Adv. Mater.21(7), 771–775 (2009). [CrossRef]
  24. Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater.23(46), 5498–5501 (2011). [CrossRef] [PubMed]
  25. B. W. Liu, Z. G. Zheng, X. C. Chen, and D. Shen, “Low-voltage-modulated laser based on dye-doped polymer stabilized cholesteric liquid crystal,” Opt. Mater. Express3(4), 519–526 (2013). [CrossRef]
  26. J. Schmidtke, G. Junnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett.101(5), 051117 (2012). [CrossRef]
  27. C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys.107(1), 013105 (2010). [CrossRef]
  28. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “The switching properties of chiral nematic liquid crystals using electrically commanded surfaces,” Soft Matter5(2), 354–362 (2009). [CrossRef]
  29. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Control of photonic bandgaps in chiral liquid crystals for distributed feedback effect,” Thin Solid Films499(1-2), 322–328 (2006). [CrossRef]
  30. M. Kawachi and O. Kogure, “Hysteresis behavior of texture in field-induced nematic-cholesteric relaxation,” Jpn. J. Appl. Phys.16(9), 1673–1678 (1977). [CrossRef]
  31. F. J. Kahn, “Electric-field-induced color changes and pitch dilation in cholesteric liquid crystals,” Phys. Rev. Lett.24(5), 209–212 (1970). [CrossRef]
  32. W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys.55(2), 839–842 (1971). [CrossRef]
  33. W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett.17(12), 531–532 (1970). [CrossRef]
  34. T. H. Lin, H. C. Jau, C. H. Chen, Y. J. Chen, T. H. Wei, C. W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett.88(6), 061122 (2006). [CrossRef]
  35. R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature392(6675), 476–479 (1998). [CrossRef]
  36. R. A. M. Hikmet and H. Kemperman, “Switchable mirrors of chiral liquid crystal gels,” Liq. Cryst.26(11), 1645–1653 (1999). [CrossRef]
  37. A. Bobrovsky and V. Shibaev, “Novel type of combined photopatternable and electro-switchable polymer-stabilized cholesteric materials,” J. Mater. Chem.19(3), 366–372 (2008). [CrossRef]
  38. J. Chen, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Reversible color switching from blue to red in a polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett.91(12), 121118 (2007). [CrossRef]
  39. M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter15(4), 413–419 (2004). [CrossRef] [PubMed]
  40. K. G. Kang, L. C. Chien, and S. Sprunt, “Polymer-stabilized cholesteric liquid crystal microgratings: a comparison of polymer network formation and electro-optic properties for mesogenic and non-mesogenic monomers,” Liq. Cryst.29(1), 9–18 (2002). [CrossRef]
  41. M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater.1(6), 417–421 (2013). [CrossRef]
  42. S.-Y. Lu and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett.91(13), 131119 (2007). [CrossRef]
  43. T. Scharf, Polarized Light in Liquid Crystals and Polymers (John Wiley, 2007).
  44. X. Yi, J. Beeckman, W. Woestenborghs, K. Panajotov, and K. Neyts, “VCSEL with photo-aligned liquid crystal overlay,” IEEE Photon. Technol. Lett.24(17), 1509–1512 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited