OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19108–19116

Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with taper-like and lateral-offset fusion splicing

Shaohua Dong, Shengli Pu, and Haotian Wang  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19108-19116 (2014)
http://dx.doi.org/10.1364/OE.22.019108


View Full Text Article

Enhanced HTML    Acrobat PDF (1665 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A kind of magnetic field sensor composed of magnetic fluid surrounding a segment of singlemode fiber is proposed. The taper-like and lateral-offset fusion splicing techniques are employed. The sensing principle is based on cladding mode interference. The interference valley wavelength or transmission loss of the sensing structure is sensitive to the external magnetic field, which is utilized for magnetic field sensing. The linear response regions are obtained in the range of 38-225 Oe and 250-475 Oe. For the valley-wavelength-shift-type sensing, the sensitivities are 14.1 pm/Oe and 26 pm/Oe at low and high field ranges, respectively. For the transmission-loss-variation-type sensing, the sensitivity of −0.024 dB/Oe is achieved for the magnetic field strength ranging from 250 to 475 Oe.

© 2014 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(160.3820) Materials : Magneto-optical materials
(230.1150) Optical devices : All-optical devices
(230.3810) Optical devices : Magneto-optic systems

ToC Category:
Sensors

History
Original Manuscript: May 29, 2014
Revised Manuscript: July 12, 2014
Manuscript Accepted: July 21, 2014
Published: July 30, 2014

Citation
Shaohua Dong, Shengli Pu, and Haotian Wang, "Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with taper-like and lateral-offset fusion splicing," Opt. Express 22, 19108-19116 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19108


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Xia, J. Wang, Z. Lu, and F. Zhang, “Birefringence and magneto-optical properties in oleic acid coated Fe3O4 nanoparticles: application for optical switch,” Int. J. Nanosci.10(03), 515–520 (2011). [CrossRef]
  2. A. Candiani, W. Margulis, C. Sterner, M. Konstantaki, and S. Pissadakis, “Phase-shifted Bragg microstructured optical fiber gratings utilizing infiltrated ferrofluids,” Opt. Lett.36(13), 2548–2550 (2011). [CrossRef] [PubMed]
  3. S. Pu, X. Chen, L. Chen, W. Liao, Y. Chen, and Y. Xia, “Tunable magnetic fluid grating by applying a magnetic field,” Appl. Phys. Lett.87(2), 021901 (2005). [CrossRef]
  4. R. Patel and R. V. Mehta, “Ferrodispersion: a promising candidate for an optical capacitor,” Appl. Opt.50(31), G17–G22 (2011). [CrossRef] [PubMed]
  5. H. E. Horng, J. J. Chieh, Y. H. Chao, S.-Y. Yang, C.-Y. Hong, and H. C. Yang, “Designing optical-fiber modulators by using magnetic fluids,” Opt. Lett.30(5), 543–545 (2005). [CrossRef] [PubMed]
  6. P. Zu, C.-C. Chan, L. W. Siang, Y. Jin, Y. Zhang, L. H. Fen, L. Chen, and X. Dong, “Magneto-optic fiber Sagnac modulator based on magnetic fluids,” Opt. Lett.36(8), 1425–1427 (2011). [CrossRef] [PubMed]
  7. S. Pu, S. Dong, and J. Huang, “Tunable slow light based on magnetic-fluid-infiltrated photonic crystal waveguides,” J. Opt.16(4), 045102 (2014). [CrossRef]
  8. Y. Miao, J. Wu, W. Lin, K. Zhang, Y. Yuan, B. Song, H. Zhang, B. Liu, and J. Yao, “Magnetic field tunability of optical microfiber taper integrated with ferrofluid,” Opt. Express21(24), 29914–29920 (2013). [CrossRef] [PubMed]
  9. S. Pu and S. Dong, “Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with up-tapered joints,” IEEE Photonics J.6, 5300206 (2014).
  10. H. Wang, S. Pu, N. Wang, S. Dong, and J. Huang, “Magnetic field sensing based on singlemode-multimode-singlemode fiber structures using magnetic fluids as cladding,” Opt. Lett.38(19), 3765–3768 (2013). [CrossRef] [PubMed]
  11. Y. Chen, Q. Han, T. Liu, X. Lan, and H. Xiao, “Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid,” Opt. Lett.38(20), 3999–4001 (2013). [CrossRef] [PubMed]
  12. W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett.103(15), 151101 (2013). [CrossRef]
  13. P. Zu, C.-C. Chan, W. S. Lew, L. Hu, Y. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photonics J.4(2), 491–498 (2012). [CrossRef]
  14. M. Deng, X. Sun, M. Han, and D. Li, “Compact magnetic-field sensor based on optical microfiber Michelson interferometer and Fe3O4 nanofluid,” Appl. Opt.52(4), 734–741 (2013). [CrossRef] [PubMed]
  15. A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, “Optofluidic magnetometer developed in a microstructured optical fiber,” Opt. Lett.37(21), 4467–4469 (2012). [CrossRef] [PubMed]
  16. S. Dong, S. Pu, and J. Huang, “Magnetic field sensing based on magneto-volume variation of magnetic fluids investigated by air-gap Fabry-Pérot fiber interferometers,” Appl. Phys. Lett.103(11), 111907 (2013). [CrossRef]
  17. X. Li and H. Ding, “All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid,” Opt. Lett.37(24), 5187–5189 (2012). [CrossRef] [PubMed]
  18. P. Zu, C.-C. Chan, T. Gong, Y. Jin, W. C. Wong, and X. Dong, “Magneto-optical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid,” Appl. Phys. Lett.101(24), 241118 (2012). [CrossRef]
  19. R. Gao, Y. Jiang, and S. Abdelaziz, “All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers,” Opt. Lett.38(9), 1539–1541 (2013). [CrossRef] [PubMed]
  20. H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, and S. N. Kale, “Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection,” Appl. Phys. Lett.99(16), 161101 (2011). [CrossRef]
  21. Z. Tian, S. S.-H. Yam, and H.-P. Look, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett.20(16), 1387–1389 (2008). [CrossRef]
  22. J. Zhang and S. Peng, “A compact SMS refractometer based on HF corrosion scheme,” in Proceedings of IEEE Conference on Photonics and Optoelectronics, China, June 19–21, 2010.
  23. R. Yang, Y.-S. Yu, Y. Xue, C. Chen, Q.-D. Chen, and H.-B. Sun, “Single S-tapered fiber Mach-Zehnder interferometers,” Opt. Lett.36(23), 4482–4484 (2011). [CrossRef] [PubMed]
  24. C.-Y. Hong, H. E. Horng, and S. Y. Yang, “Tunable refractive index of magnetic fluids and its applications,” Phys. Status Solidi1(7c), 1604–1609 (2004). [CrossRef]
  25. C.-Y. Hong, S. Y. Yang, H. E. Horng, and H. C. Yang, “Control parameters for the tunable refractive index of magnetic fluid films,” J. Appl. Phys.94(6), 3849–3852 (2003). [CrossRef]
  26. P. Childs, A. Candiani, and S. Pissadakis, “Optical fiber cladding ring magnetic field sensor,” IEEE Photon. Technol. Lett.23(13), 929–931 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited