OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19131–19140

Double antiresonant hollow core fiber – guidance in the deep ultraviolet by modified tunneling leaky modes

Alexander Hartung, Jens Kobelke, Anka Schwuchow, Katrin Wondraczek, Jörg Bierlich, Jürgen Popp, Torsten Frosch, and Markus A. Schmidt  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19131-19140 (2014)
http://dx.doi.org/10.1364/OE.22.019131


View Full Text Article

Enhanced HTML    Acrobat PDF (3495 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Guiding light inside the hollow cores of microstructured optical fibers is a major research field within fiber optics. However, most of current fibers reveal limited spectral operation ranges between the mid-visible and the infrared and rely on complicated microstructures. Here we report on a new type of hollow-core fiber, showing for the first time distinct transmission windows between the deep ultraviolet and the near infrared. The fiber, guiding in a single mode, operates by the central core mode being anti-resonant to adjacent modes, leading to a novel modified tunneling leaky mode. The fiber design is straightforward to implement and reveals beneficial features such as preselecting the lowest loss mode (Gaussian-like or donut-shaped mode). Fibers with such a unique combination of attributes allow accessing the extremely important deep-UV range with Gaussian-like mode quality and may pave the way for new discoveries in biophotonics, multispectral spectroscopy, photo-initiated chemistry or ultrashort pulse delivery.

© 2014 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics

History
Original Manuscript: April 29, 2014
Revised Manuscript: June 27, 2014
Manuscript Accepted: July 7, 2014
Published: July 30, 2014

Citation
Alexander Hartung, Jens Kobelke, Anka Schwuchow, Katrin Wondraczek, Jörg Bierlich, Jürgen Popp, Torsten Frosch, and Markus A. Schmidt, "Double antiresonant hollow core fiber – guidance in the deep ultraviolet by modified tunneling leaky modes," Opt. Express 22, 19131-19140 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19131


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett.29(11), 1285–1287 (2004). [CrossRef] [PubMed]
  2. K. F. Mak, J. C. Travers, N. Y. Joly, A. Abdolvand, and P. S. J. Russell, “Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber,” Opt. Lett.38(18), 3592–3595 (2013). [CrossRef] [PubMed]
  3. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003). [CrossRef] [PubMed]
  4. T. Frosch, D. Yan, and J. Popp, “Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs,” Anal. Chem.85(13), 6264–6271 (2013). [CrossRef] [PubMed]
  5. S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem.86(11), 5278–5285 (2014). [CrossRef] [PubMed]
  6. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express20(10), 11153–11158 (2012). [CrossRef] [PubMed]
  7. Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol.4(2), 107–109 (2008). [CrossRef] [PubMed]
  8. T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem.79(3), 986–993 (2007). [CrossRef] [PubMed]
  9. V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, “Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates,” Science269(5232), 1843–1848 (1995). [CrossRef] [PubMed]
  10. T. Frosch, M. Schmitt, and J. Popp, “In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark,” J. Phys. Chem. B111(16), 4171–4177 (2007). [CrossRef] [PubMed]
  11. T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem.79(3), 1101–1108 (2007). [CrossRef] [PubMed]
  12. P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett.37(21), 4371–4373 (2012). [CrossRef] [PubMed]
  13. J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry16(19), 5607–5612 (2010). [CrossRef] [PubMed]
  14. A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev.42(22), 8629–8648 (2013). [CrossRef] [PubMed]
  15. A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Opt. Lett.36(24), 4776–4778 (2011). [CrossRef] [PubMed]
  16. G. J. Leggett, “Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms,” Nanoscale4(6), 1840–1855 (2012). [CrossRef] [PubMed]
  17. E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol.45(2), R1–R59 (2000). [CrossRef] [PubMed]
  18. T. Frosch, S. Koncarevic, K. Becker, and J. Popp, “Morphology-sensitive Raman modes of the malaria pigment hemozoin,” Analyst (Lond.)134(6), 1126–1132 (2009). [CrossRef] [PubMed]
  19. T. Frosch and J. Popp, “Relationship between molecular structure and Raman spectra of quinolines,” J. Mol. Struct.924–926, 301–308 (2009). [CrossRef]
  20. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission + Lasers,” Bell System Technical Journal43, 1783 (1964).
  21. Y. Fink, D. J. Ripin, S. H. Fan, C. P. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol.17(11), 2039–2041 (1999). [CrossRef]
  22. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express9(13), 748–779 (2001). [CrossRef] [PubMed]
  23. K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express12(8), 1510–1517 (2004). [CrossRef] [PubMed]
  24. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science282(5393), 1476–1478 (1998). [CrossRef] [PubMed]
  25. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999). [CrossRef] [PubMed]
  26. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003). [CrossRef] [PubMed]
  27. J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003). [CrossRef] [PubMed]
  28. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature424(6949), 657–659 (2003). [CrossRef] [PubMed]
  29. M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. S. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss,” Opt. Lett.38(13), 2215–2217 (2013). [CrossRef] [PubMed]
  30. O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, “Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett.109(2), 024502 (2012). [CrossRef] [PubMed]
  31. F. R. Garcia-Garcia, M. A. Rahman, I. D. Gonzalez-Jimenez, and K. Li, “Catalytic hollow fibre membrane micro-reactor: High purity H-2 production by WGS reaction,” Catal. Today171(1), 281–289 (2011). [CrossRef]
  32. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013). [CrossRef]
  33. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett.31(24), 3574–3576 (2006). [CrossRef] [PubMed]
  34. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express15(20), 12680–12685 (2007). [CrossRef] [PubMed]
  35. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett.36(5), 669–671 (2011). [CrossRef] [PubMed]
  36. S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, and J.-L. Auguste, “Ultraviolet guiding hollow-core photonic crystal fiber,” Opt. Lett.34(19), 2888–2890 (2009). [CrossRef] [PubMed]
  37. F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express21(18), 21466–21471 (2013). [CrossRef] [PubMed]
  38. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express13(20), 8277–8285 (2005). [CrossRef] [PubMed]
  39. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt.23(24), 4486–4493 (1984). [CrossRef] [PubMed]
  40. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002). [CrossRef] [PubMed]
  41. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express11(10), 1243–1251 (2003). [CrossRef] [PubMed]
  42. K. J. Rowland, S. Afshar V, and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express16(22), 17935–17951 (2008). [CrossRef] [PubMed]
  43. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express18(1), 309–322 (2010). [CrossRef] [PubMed]
  44. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express18(22), 23133–23146 (2010). [CrossRef] [PubMed]
  45. L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express20(13), 14350–14361 (2012). [CrossRef] [PubMed]
  46. P. Yeh, A. Yariv, and E. Marom, “THEORY OF BRAGG FIBER,” J. Opt. Soc. Am.68(9), 1196–1201 (1978). [CrossRef]
  47. A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).
  48. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express19(2), 1441–1448 (2011). [CrossRef] [PubMed]
  49. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express4(2), 193–205 (2013). [CrossRef] [PubMed]
  50. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express13(1), 236–244 (2005). [CrossRef] [PubMed]
  51. E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express20(19), 20980–20991 (2012). [CrossRef] [PubMed]
  52. F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, and J.-M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett.35(8), 1157–1159 (2010). [CrossRef] [PubMed]
  53. A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: Capillary drawing,” J. Lightwave Technol.19(12), 1924–1931 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited